Solveeit Logo

Question

Question: When the value of angle A is \[{{90}^{\circ }}\] and B is \[{{0}^{\circ }}\] then find the value of ...

When the value of angle A is 90{{90}^{\circ }} and B is 0{{0}^{\circ }} then find the value of sin2Asin2B.{{\sin }^{2}}A-{{\sin }^{2}}B.
(a)0\left( a \right)0
(b)12\left( b \right)\dfrac{1}{2}
(c)1\left( c \right)1
(d)2\left( d \right)2

Explanation

Solution

. We will first of all assume the variables for sin A and sin B and then by calculating the value of variables of sin A and sin B. We will calculate sin2A{{\sin }^{2}}A by using sin2A=(sinA)(sinA){{\sin }^{2}}A=\left( \sin A \right)\left( \sin A \right) and similarly sin2B{{\sin }^{2}}B by using sin2B=(sinB)(sinB).{{\sin }^{2}}B=\left( \sin B \right)\left( \sin B \right). And finally subtract them to get the result.

Complete step-by-step solution
We are given to find the value of the expression
sin2Asin2B......(i){{\sin }^{2}}A-{{\sin }^{2}}B......\left( i \right)
Let a = sin A and b = sin B. We are given A=90A={{90}^{\circ }} and B=0.B={{0}^{\circ }}. We know that the value of sin90=1\sin {{90}^{\circ }}=1 and the value of sin0=0.\sin {{0}^{\circ }}=0.
sinA=sin90=1\Rightarrow \sin A=\sin {{90}^{\circ }}=1
sinB=sin0=0\Rightarrow \sin B=\sin {{0}^{\circ }}=0
Then the value of sin2A{{\sin }^{2}}A can be obtained by using sin2A=(sinA)(sinA).{{\sin }^{2}}A=\left( \sin A \right)\left( \sin A \right).
sin2A=sin290=(sin90)(sin90)\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=\left( \sin {{90}^{\circ }} \right)\left( \sin {{90}^{\circ }} \right)
sin2A=sin290=1×1\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=1\times 1
sin2A=sin290=1\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=1
sin2A=1\Rightarrow {{\sin }^{2}}A=1
And
sin2B=sin20=(sin(0))sin0{{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=\left( \sin \left( {{0}^{\circ }} \right) \right)\sin {{0}^{\circ }}
sin2B=sin20=0×0\Rightarrow {{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=0\times 0
sin2B=sin20=0\Rightarrow {{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=0
Then the value of sin2Asin2B{{\sin }^{2}}A-{{\sin }^{2}}B will be
sin2Asin2B=sin290sin20{{\sin }^{2}}A-{{\sin }^{2}}B={{\sin }^{2}}{{90}^{\circ }}-{{\sin }^{2}}{{0}^{\circ }}
sin2Asin2B=10\Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}B=1-0
sin2Asin2B=1\Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}B=1
Therefore, the correct option is (a).

Note: The possibility of mistake can be when the angles are A=45A={{45}^{\circ }} or B=45B={{45}^{\circ }} then sin45\sin {{45}^{\circ }} would be sin45=12\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} and sin245=(sin45)(sin45)=(12)(12)=12.{{\sin }^{2}}{{45}^{\circ }}=\left( \sin {{45}^{\circ }} \right)\left( \sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{1}{2}. So, there can be a difference between sin245{{\sin }^{2}}{{45}^{\circ }} and sin45.\sin {{45}^{\circ }}. Here it was A=90A={{90}^{\circ }} and sin90=1=sin290,\sin {{90}^{\circ }}=1={{\sin }^{2}}{{90}^{\circ }}, so that is the same here.