Question
Question: When the value of angle A is \[{{90}^{\circ }}\] and B is \[{{0}^{\circ }}\] then find the value of ...
When the value of angle A is 90∘ and B is 0∘ then find the value of sin2A−sin2B.
(a)0
(b)21
(c)1
(d)2
Solution
. We will first of all assume the variables for sin A and sin B and then by calculating the value of variables of sin A and sin B. We will calculate sin2A by using sin2A=(sinA)(sinA) and similarly sin2B by using sin2B=(sinB)(sinB). And finally subtract them to get the result.
Complete step-by-step solution
We are given to find the value of the expression
sin2A−sin2B......(i)
Let a = sin A and b = sin B. We are given A=90∘ and B=0∘. We know that the value of sin90∘=1 and the value of sin0∘=0.
⇒sinA=sin90∘=1
⇒sinB=sin0∘=0
Then the value of sin2A can be obtained by using sin2A=(sinA)(sinA).
⇒sin2A=sin290∘=(sin90∘)(sin90∘)
⇒sin2A=sin290∘=1×1
⇒sin2A=sin290∘=1
⇒sin2A=1
And
sin2B=sin20∘=(sin(0∘))sin0∘
⇒sin2B=sin20∘=0×0
⇒sin2B=sin20∘=0
Then the value of sin2A−sin2B will be
sin2A−sin2B=sin290∘−sin20∘
⇒sin2A−sin2B=1−0
⇒sin2A−sin2B=1
Therefore, the correct option is (a).
Note: The possibility of mistake can be when the angles are A=45∘ or B=45∘ then sin45∘ would be sin45∘=21 and sin245∘=(sin45∘)(sin45∘)=(21)(21)=21. So, there can be a difference between sin245∘ and sin45∘. Here it was A=90∘ and sin90∘=1=sin290∘, so that is the same here.