Solveeit Logo

Question

Physics Question on thermal properties of matter

When the temperature of a rod increases from t to t +Δt+ \Delta t its moment of inertia increases from I to I + ΔI\Delta I . If α\alpha be the coefficient of linear expansion of the rod, then the value of ΔII\frac{\Delta I}{I} is

A

2αΔt2 \alpha \Delta t

B

αΔt\alpha \Delta t

C

αΔt2\frac{\alpha \Delta t}{2}

D

Δtα\frac{\Delta t}{\alpha}

Answer

2αΔt2 \alpha \Delta t

Explanation

Solution

Moment of inertia of a rod
I=Mλ212\, \, \, \, \, \, \, \, \, \, I=\frac{M\lambda^2}{12}
dI=M122λdλ\, \, \, \, \, \, \, \, \, \, dI =\frac{M}{12} 2\lambda d\lambda \, \, \, \, \, \, \, \, \, (on differenciate)
dII=2dλλ=2αΔt\, \, \, \, \, \, \, \, \, \, \frac{dI}{I}=2 \frac{d \lambda}{\lambda}=2 \alpha \Delta t