Solveeit Logo

Question

Physics Question on Alternating current

When the rms voltages VL,VCV _{ L }, V _{ C } and VRV _{ R } are measured respectively across the inductor L,L , the capacitor CC and the resistor RR in a series LCR circuit connected to an AC source, it is found that the ratio VL:VC:VR=1:2:3V _{ L }: V _{ C }: V _{ R }=1: 2: 3. If the rms voltage of the AC sources is 100V,100 \,V , the VRV _{ R } is close to:

A

50V50\, V

B

70V70\, V

C

90V90\, V

D

100V100\, V

Answer

90V90\, V

Explanation

Solution

I=VrmsZ=VrmsR2+(XLXC)2=1009x2+x2=10010x2I=\frac{V_{rms}}{Z}=\frac{V_{rms}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)}^{2}}=\frac{100}{\sqrt{9x^{2}+x^{2}}}=\frac{100}{\sqrt{10x^{2}}}
Since VL:VC:VR=1:2:3V_{L} : V_{C} : V_{R} = 1 : 2 : 3
XL=XC:XR=1:2:3X_{L}=X_{C} : X_{R}=1 : 2 : 3
=x:2x:3x=x : 2x : 3x
now VR=I(3x)V_{R}=I\left(3x\right)
=10010x2.3x=\frac{100}{\sqrt{10x^{2}}}.3x
94.87V\approx94.87\,V