Solveeit Logo

Question

Mathematics Question on Plane

When the coordinate axes are rotated about the origin in the positive direction through an angle π4\frac{\pi}{4}, if the equation 25x2+9y2=22525 x^2 + 9y^2 = 225 is transformed to αx2+βxy+γy2=δ\alpha x^2 + \beta xy + \gamma y^2 = \delta, then (α+β+γδ)2(\alpha + \beta + \gamma - \sqrt{\delta})^2 =

A

3

B

9

C

4

D

16

Answer

9

Explanation

Solution

After rotation of coordinate axes about the origin in the positive direction through on angle π4\frac{\pi}{4}, the new coordinates are (X,Y)(X, Y) have relation with older coordinates (x,y)(x, y) is
(x,y)=[(XcosθYsinθ),(Ycosθ+Xsinθ))(x, y)=[(X \cos \theta-Y \sin \theta),(Y \cos \theta+X \sin \theta)), where
θ=π4\theta=\frac{\pi}{4}
=((X2Y2),(Y2+X2))=\left(\left(\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}}\right),\left(\frac{Y}{\sqrt{2}}+\frac{X}{\sqrt{2}}\right)\right)
so, 25x2+9y2=22525 x^{2}+9 y^{2}=225 becomes
25(XY2)2+9(X+Y2)2=22525\left(\frac{X-Y}{\sqrt{2}}\right)^{2}+9\left(\frac{X+Y}{\sqrt{2}}\right)^{2}=225
34X2+34Y232XY=450\Rightarrow 34 X^{2}+34 Y^{2}-32 X Y=450
17X2+17Y216XY=225\Rightarrow 17 X^{2}+17 Y^{2}-16 X Y=225
On comparing, we get
α=γ=17,β=16\alpha=\gamma=17, \beta=-16 and δ=225\delta=225
(α+β+γδ)2\therefore(\alpha+\beta+\gamma-\sqrt{\delta})^{2}
=(341615)2=(34-16-15)^{2}
=32=9=3^{2}=9