Solveeit Logo

Question

Question: When sulphur in the form of \(\text{ }{{\text{S}}_{\text{2}}}\text{(g) }\) is heated at \(\text{ 900...

When sulphur in the form of  S2(g) \text{ }{{\text{S}}_{\text{2}}}\text{(g) } is heated at  900 K \text{ 900 K }, the initial partial pressure of  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) } which was 1 atm falls by  290/0 \text{ 29}{\scriptstyle{}^{0}/{}_{0}}\text{ } at equilibrium. This is because of the conversion of some  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) }to  S2(g) \text{ }{{\text{S}}_{\text{2}}}\text{(g) }. Find the  KP \text{ }{{\text{K}}_{\text{P}}}\text{ } for reaction,  S8(g)  4S2(g) \text{ }{{\text{S}}_{8}}\text{(g) }\rightleftharpoons \text{ 4}{{\text{S}}_{\text{2}}}\text{(g) }

Explanation

Solution

For an ideal gaseous mixture, each component follows Dalton’s law of partial pressure i.e. Pi = Xi\text{ }{{\text{P}}_{\text{i}}}\text{ = }{{\text{X}}_{\text{i}}}\text{P } where P is the total pressure and  pi \text{ }{{\text{p}}_{\text{i}}}\text{ } is the partial pressure of the ith component with mole fraction  Xi \text{ }{{\text{X}}_{\text{i}}}\text{ } in the mixture. Then the equilibrium constant for a reaction is,
 aA+bmM +n  Kp = PMmPNnPAaPBb  \begin{aligned} & \text{ }a\text{A+}b\text{B }\rightleftharpoons m\text{M +}n\text{N } \\\ & \text{ }\Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{P}_{\text{M}}^{\text{m}}\text{P}_{\text{N}}^{\text{n}}}{\text{P}_{\text{A}}^{\text{a}}\text{P}_{\text{B}}^{\text{b}}}\text{ } \\\ \end{aligned}

Complete step by step solution:
We have given that sulphur in the form of  S2(g) \text{ }{{\text{S}}_{\text{2}}}\text{(g) } is heated at  900 K \text{ 900 K } .the partial pressure of  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) } sulphur form is 1 atm.at equilibrium, the partial pressure of the  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) } forms drops by  290/0 \text{ 29}{\scriptstyle{}^{0}/{}_{0}}\text{ } .
We are interested to determine the equilibrium constant  KP \text{ }{{\text{K}}_{\text{P}}}\text{ } of the reaction. The reaction of  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) }from to  S2(g) \text{ }{{\text{S}}_{\text{2}}}\text{(g) } form is given as follows,
 S8(g)  4S2(g) \text{ }{{\text{S}}_{8}}\text{(g) }\rightleftharpoons \text{ 4}{{\text{S}}_{\text{2}}}\text{(g) }
For an ideal gaseous mixture, each component follows Dalton’s law of partial pressure i.e. Pi = Xi\text{ }{{\text{P}}_{\text{i}}}\text{ = }{{\text{X}}_{\text{i}}}\text{P } where P is the total pressure and  pi \text{ }{{\text{p}}_{\text{i}}}\text{ } is the partial pressure of the ith component with mole fraction  Xi \text{ }{{\text{X}}_{\text{i}}}\text{ } in the mixture. Then the equilibrium constant for a reaction is,
 aA+bmM +n  Kp = PMmPNnPAaPBb  \begin{aligned} & \text{ }a\text{A+}b\text{B }\rightleftharpoons m\text{M +}n\text{N } \\\ & \text{ }\Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{P}_{\text{M}}^{\text{m}}\text{P}_{\text{N}}^{\text{n}}}{\text{P}_{\text{A}}^{\text{a}}\text{P}_{\text{B}}^{\text{b}}}\text{ } \\\ \end{aligned}
We have given the following reaction between the  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) } to give  S2(g) \text{ }{{\text{S}}_{\text{2}}}\text{(g) }.Initially the  S8(g) \text{ }{{\text{S}}_{8}}\text{(g) } has a pressure equal to 1 atm. At equilibrium the  290/0 \text{ 29}{\scriptstyle{}^{0}/{}_{0}}\text{ } of the pressure is dropped .Thus reaction is given as follows,
 S8(g)4S2(g) Initial P10 At eqm1α4α  \text{ }\begin{matrix} {} & {{\text{S}}_{\text{8}}}\text{(g)} & \rightleftharpoons & \text{4}{{\text{S}}_{\text{2}}}\text{(g)} \\\ \text{Initial P} & 1 & {} & 0 \\\ \text{At e}{{\text{q}}^{\text{m}}} & 1-\alpha & {} & 4\alpha \\\ \end{matrix}\text{ }
Where α\alpha is a degree of dissociation of sulphur.
Here  290/0 \text{ 29}{\scriptstyle{}^{0}/{}_{0}}\text{ } of the pressure is dropped. Thus the value of the degree of dissociation is equal to  α = 29100 = 0.29 \text{ }\alpha \text{ = }\dfrac{29}{100}\text{ = 0}\text{.29 }
At equilibrium, the equilibrium constant for the reaction in terms of partial pressure is written as follows,
 Kp = (PS2)4PS8 = (4×0.29)4(10.29)=(1.16)40.71=2.55 \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left( {{\text{P}}_{{{\text{S}}_{\text{2}}}}} \right)}^{4}}}{{{\text{P}}_{{{\text{S}}_{\text{8}}}}}}\text{ = }\dfrac{{{\left( 4\times 0.29 \right)}^{4}}}{\left( 1-0.29 \right)}=\dfrac{{{\left( 1.16 \right)}^{4}}}{0.71}=2.55\text{ }

Thus the value of the equilibrium constant for the reaction is  KP = 2.55\text{ }{{\text{K}}_{\text{P}}}\text{ = }2.55.

Note: The attainment of equilibrium can be recognized by considering the observable properties such as pressure, concentration, density, or colour . The equilibrium constant can be written in terms of concentration as follows,
 KC = CMmCNnCAaCBb \text{ }{{\text{K}}_{\text{C}}}\text{ = }\dfrac{\text{C}_{\text{M}}^{\text{m}}\text{C}_{\text{N}}^{\text{n}}}{\text{C}_{\text{A}}^{\text{a}}\text{C}_{\text{B}}^{\text{b}}}\text{ }
Where C is the concertation, A and B are reactants and M and N are the product.