Question
Question: When *P* is a natural number, then \(P^{n + 1} + (P + 1)^{2n - 1}\) is divisible by...
When P is a natural number, then Pn+1+(P+1)2n−1 is divisible by
A
P
B
P2+P
C
P2+P+1
D
P2−1
Answer
P2+P+1
Explanation
Solution
For n =1, we get,
Pn+1+(P+1)2n−1=P2+(P+1)1=P2+P+1,
Which is divisible by P2+P+1, so result is true for n =1
Let us assume that the given result is true for n=m∈N
i.e. Pm+1+(P+1)2m−1 is divisible by P2+P+1 i.e. pm+1+(p+1)2m−1=k(p2+p+1) ∀ k∈N …..(i)
Now. P(m+1)+1+(P+1)2(m+1)−1
=pm+2+(p+1)2m+1=pm+2+(p+1)2(p+1)2m−1
=Pm+2+(P+1)2[k(P2+P+1)−Pm+1] by using (i)
=Pm+2+(P+1)2⋅k(P2+P+1)−(P+1)2(P)m+1
=Pm+1[P−(P+1)2]+(P+1)2⋅k(P2+P+1)
}{= - P^{m + 1}\lbrack P^{2} + P + 1\rbrack + (P + 1)^{2} \cdot k(P^{2} + P + 1)}$$ $$= (P^{2} + P + 1)\lbrack k \cdot (P + 1)^{2} - P^{m + 1}\rbrack$$ Which is divisible by $p^{2} + p + 1$, so the result is true for $n = m + 1$. Therefore, the given result is true for all $n \in N$ by induction. **Trick :** For *n* = 2, we get, $$\mathbf{P}^{\mathbf{n + 1}}\mathbf{+ (P + 1}\mathbf{)}^{\mathbf{2n - 1}}\mathbf{=}\mathbf{P}^{\mathbf{3}}\mathbf{+ (P + 1}\mathbf{)}^{\mathbf{3}}\mathbf{=}\mathbf{P}^{\mathbf{3}}\mathbf{+}\mathbf{P}^{\mathbf{3}}\mathbf{+ 1 + 3}\mathbf{P}^{\mathbf{2}}\mathbf{+ 3P}\mathbf{ }$$$\mathbf{= 2}\mathbf{P}^{\mathbf{3}}\mathbf{+ 3}\mathbf{P}^{\mathbf{2}}\mathbf{+ 3P + 1}$Which is divisible by $P$. Given result is true for all $n \in N$