Solveeit Logo

Question

Physics Question on mechanical properties of fluid

When an air bubble of radius rr rises from the bottom to the surface of a lake, its radius becomes 5r4\frac{5r}{4}. Taking the atmospheric pressure to be equal to 10m10\, m eight of water column, the depth of the lake would approximately be (ignore the surface tension and the effect of temperature) :

A

11.2 m

B

8.7 m

C

9.5 m

D

10.5 m

Answer

9.5 m

Explanation

Solution

Given, bubble of radius rr rises from bottom of lake. The radius of bubble at top becomes 5r/45 r / 4. Therefore, pressure in bubble at bottom is
P1=P0+ρgh+4TrP_{1}=P_{0}+\rho g h+\frac{4 T}{r}
Pressure in bubble at top is P2=P0+4T5r/4P_{2}=P_{0}+\frac{4 T}{5 r / 4}
Now, we know P1V1=P2V2P_{1} V_{1}=P_{2} V_{2}, therefore,
(P0+ρgh+4T4)4π3r3=(P0+4T5r/4)4π3(5r4)3\left(P_{0}+\rho g h+\frac{4 T}{4}\right) \frac{4 \pi^{\prime}}{3} r^{3}=\left(P_{0}+\frac{4 T}{5 r / 4}\right) \frac{4 \pi}{3}\left(\frac{5 r}{4}\right)^{3}
P0+ρhg+4Tr=(P0+4T×45r)12564P_{0}+\rho h g+\frac{4 T}{r}=\left(P_{0}+\frac{4 T \times 4}{5 r}\right) \frac{125}{64}
Now given P0=10ρgP_{0}=10\, \rho g, therefore,
10ρg+ρgh+4Tr=12564×10ρg+16T5r×1256410\, \rho g+\rho g h+\frac{4 T}{r}=\frac{125}{64} \times 10 \rho g+\frac{16 T}{5 r} \times \frac{125}{64}
Neglecting effect of temperature, we get
10ρg+ρgh=12564×10ρg10 \,\rho g+\rho g h=\frac{125}{64} \times 10 \,\rho g
10+h=12564×10\Rightarrow 10+h=\frac{125}{64} \times 10
h=12506410=9.53125m\Rightarrow h=\frac{1250}{64}-10=9.53125 \,m
h9.5m\Rightarrow h \sim 9.5\, m