Solveeit Logo

Question

Physics Question on Dimensional Analysis

When a wave traverses a medium the displacement of a particle located at xx at a time is given by y=asin(btcx)y = a \sin (bt - cx), where aa, and bb are constants of the wave, which of the following is a quantity with dimensions?

A

ya\frac{y}{a}

B

btbt

C

cxcx

D

bc\frac{b}{c}

Answer

bc\frac{b}{c}

Explanation

Solution

Given, y=asin(btcx)y=a \sin (b t-c x)
Comparing the given equation with general wave equation y=asin2πtT2πxλy=a \sin \frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}
we get b=2πT,c=2πλb=\frac{2 \pi}{T}, c=\frac{2 \pi}{\lambda}
(a) Dimensions of ya= metre  metre =LL\frac{y}{a}=\frac{\text { metre }}{\text { metre }}=\frac{L}{L}
(b) Dimensions of bt=2πT.t=TTb t=\frac{2 \pi}{T} . t=\frac{T}{T}
(c) Dimensions of cx=2πλx=LLc x=\frac{2 \pi}{\lambda} \cdot x=\frac{L}{L}
(d) Dimensions of bc=2πT2πλ=λT=LT1\frac{b}{c}=\frac{2 \pi}{T} \frac{2 \pi}{\lambda}=\frac{\lambda}{T}=L T^{-1}

So, the correct option is (D): bc\frac bc