Solveeit Logo

Question

Question: When a train approaches a stationary observer, the apparent frequency of the whistle is n' and when ...

When a train approaches a stationary observer, the apparent frequency of the whistle is n' and when the same train recedes away from the observer, the apparent frequency is n''. Then the apparent frequency n when the observer moves with the train is –

A

n=n+n2n = \frac{n' + n''}{2}

B

n =nn\sqrt{n'n''}

C

n = 2nnn+n\frac{2n'n''}{n' + n''}

D

n = 2nnnn\frac{2n'n''}{n'–n''}

Answer

n = 2nnn+n\frac{2n'n''}{n' + n''}

Explanation

Solution

n¢ = n ….(1)

n¢¢ = n ….(2)

from (1)

\ V (nn1)=nnVs\left( \frac { \mathrm { n } ^ { \prime } } { \mathrm { n } } - 1 \right) = \frac { \mathrm { n } ^ { \prime } } { \mathrm { n } } V _ { \mathrm { s } }

\ Vs = = V(nnn)×nn\mathrm { V } \left( \frac { \mathrm { n } ^ { \prime } - \mathrm { n } } { \mathrm { n } } \right) \times \frac { \mathrm { n } } { \mathrm { n } ^ { \prime } } =

Put in (2)

n'' = n n¢¢ =

n2 = n¢ n¢¢