Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

When a solid sphere rolls without slipping down an inclined plane making an angle θ\theta with the horizontal, the acceleration of its centre of mass is aa. If the same sphere slides without friction, its acceleration aa' will be

A

72a\frac{7}{2}a

B

57a\frac{5}{7}a

C

75a\frac{7}{5}a

D

52a\frac{5}{2}a

Answer

75a\frac{7}{5}a

Explanation

Solution

Acceleration of the solid sphere when it rolls without slipping down an inclined plane is a=gsinθ1+IMR2a= \frac{g\, sin \,\theta}{1+\frac{I}{MR^{2}}} For a solid sphere, I=25MR2I= \frac{2}{5}MR^{2} a=gsinθ1+25=57gsinθ...(i)\therefore a = \frac{g \,sin \,\theta}{1+\frac{2}{5}} = \frac{5}{7} g \,sin\, \theta\quad...\left(i\right) Acceleration of the same sphere when it slides without friction down an same inclined plane is a=gsinθ...(ii)a'= g \,sin \,\theta\quad...\left(ii\right) Divide (ii)\left(ii\right) by (i)\left(i\right), we get aa=75 \frac{a'}{a} = \frac{7}{5} or a=75aa' = \frac{7}{5}a