Solveeit Logo

Question

Question: When a right handed rectangular Cartesian system oxyz is rotated about the z-axis through an angle \...

When a right handed rectangular Cartesian system oxyz is rotated about the z-axis through an angle π4\frac{\pi}{4} in the counter-clockwise direction it is found that a vectora\overset{\rightarrow}{a} has the components 222\sqrt{2}, 323\sqrt{2} and 4. The components of a\overset{\rightarrow}{a}in the oxyz coordinate system are-

A

5, –1, 4

B

5, –1, 42\sqrt{2}

C

–1, –5, 42\sqrt{2}

D

none

Answer

none

Explanation

Solution

If i^\overset{\hat{}}{i}, j^\overset{\hat{}}{j}, k^\overset{\hat{}}{k}are the unit vectors in the oxyz system and i^\overset{\hat{}}{i}1, j^\overset{\hat{}}{j}1, k^\overset{\hat{}}{k}1 are the unit vectors in the system o x¢ y¢ z¢ obtained after rotation, then

i^\overset{\hat{}}{i}1 = 12\frac { 1 } { \sqrt { 2 } } i^\overset{\hat{}}{i}+12\frac{1}{\sqrt{2}} j^\overset{\hat{}}{j}

j^\overset{\hat{}}{j}1 = 12\frac { 1 } { \sqrt { 2 } } i^\overset{\hat{}}{i}+12\frac { 1 } { \sqrt { 2 } } j^\overset{\hat{}}{j} and k^\overset{\hat{}}{k}1 = k^\overset{\hat{}}{k}

= 323 \sqrt { 2 } j^\overset{\hat{}}{j} 1 + 4k^\overset{\hat{}}{k}1

=222 \sqrt { 2 } (12i12j^())\left( \frac{1}{\sqrt{2}}\overset{萀\frac{1}{\sqrt{2}}\overset{\hat{}}{j}}{i}() \right)+ 323 \sqrt { 2 } (12i12j^())\left( –\frac{1}{\sqrt{2}}\overset{萀\frac{1}{\sqrt{2}}\overset{\hat{}}{j}}{i}() \right) + 4k^\overset{\hat{}}{k}

= –i^\overset{\hat{}}{i}+ 5j^\overset{\hat{}}{j} + 4k^\overset{\hat{}}{k}

So that the components in the oxyz system are – 1, 5, 4