Solveeit Logo

Question

Question: When a particle oscillates simple harmonically, its kinetic energy varies periodically. If frequency...

When a particle oscillates simple harmonically, its kinetic energy varies periodically. If frequency of the particle is ‘n’, the frequency of the kinetic energy is

A

n/2

B

n

C

2n

D

4n

Answer

2n

Explanation

Solution

K.E. = mω22(A2y2)\frac{m\omega^{2}}{2}(A^{2} - y^{2}) =mω22[A2(Asin(ωt+φ))2]\frac{m\omega^{2}}{2}\lbrack A^{2} - (A\sin(\omega t + \varphi))^{2}\rbrack

= mω22[A2A2sin2(ωt+φ)]\frac{m\omega^{2}}{2}\lbrack A^{2} - A^{2}\sin^{2}(\omega t + \varphi)\rbrack

= mω2A22[cos2(ωt+φ)]\frac{m\omega^{2}A^{2}}{2}\lbrack\cos^{2}(\omega t + \varphi)\rbrack

= mω2A24[1+cos(2ωt+2φ)]\frac{m\omega^{2}A^{2}}{4}\lbrack 1 + \cos(2\omega t + 2\varphi)\rbrack

∴ Frequency = 2ω2π\frac{2\omega}{2\pi} = 2n