Solveeit Logo

Question

Question: When a moving body collides elastically with a stationary body, of n times its mass, then the fracti...

When a moving body collides elastically with a stationary body, of n times its mass, then the fraction of kinetic energy transferred to the stationary body is _______.

A

4n(1+n)2\frac{4n}{(1+n)^2}

B

n(1+n)2\frac{n}{(1+n)^2}

C

n2(1+n)2\frac{n^2}{(1+n)^2}

D

4n2(1+n)2\frac{4n^2}{(1+n)^2}

Answer

A. 4n(1+n)2\frac{4n}{(1+n)^2}

Explanation

Solution

Let m1=mm_1 = m and m2=nmm_2 = nm. Let the initial velocity of the moving body be uu. Initial kinetic energy KEi=12mu2KE_i = \frac{1}{2}mu^2. Final velocity of the stationary body V2=2m1m1+m2u=2mm+nmu=2u1+nV_2 = \frac{2m_1}{m_1+m_2}u = \frac{2m}{m+nm}u = \frac{2u}{1+n}. Kinetic energy transferred to the stationary body KEtransfer=12m2V22=12(nm)(2u1+n)2=2nmu2(1+n)2KE_{transfer} = \frac{1}{2}m_2V_2^2 = \frac{1}{2}(nm)(\frac{2u}{1+n})^2 = \frac{2nm u^2}{(1+n)^2}. Fraction of kinetic energy transferred = KEtransferKEi=2nmu2(1+n)212mu2=4n(1+n)2\frac{KE_{transfer}}{KE_i} = \frac{\frac{2nm u^2}{(1+n)^2}}{\frac{1}{2}mu^2} = \frac{4n}{(1+n)^2}.