Solveeit Logo

Question

Question: When a metal surface is illuminated by light of wavelengths 400 nm and 250 nm, the maximum velocitie...

When a metal surface is illuminated by light of wavelengths 400 nm and 250 nm, the maximum velocities of the photoelectrons ejected are v and 2v respectively. The work function of the metal is - (h = Planck's constant, c = velocity of light in air)

A

2 hc × 106 J

B

1.5 hc × 106 J

C

hc × 106 J

D

0.5 hc × 106 J

Answer

0.5 hc × 106 J

Explanation

Solution

12\frac { 1 } { 2 }= K.E.max = hcλ\frac { \mathrm { hc } } { \lambda } – W

12\frac { 1 } { 2 }mv12 = hcλ1\frac { \mathrm { hc } } { \lambda _ { 1 } } – W ….(1)

12\frac { 1 } { 2 } mv22 = – W ….(2)

Ž (v1v2)2\left( \frac { \mathrm { v } _ { 1 } } { \mathrm { v } _ { 2 } } \right) ^ { 2 } =hcλ1Whcλ2W\frac { \frac { \mathrm { hc } } { \lambda _ { 1 } } - \mathrm { W } } { \frac { \mathrm { hc } } { \lambda _ { 2 } } - \mathrm { W } }= (v2v)2\left( \frac { \mathrm { v } } { 2 \mathrm { v } } \right) ^ { 2 }

hcλ2\frac { \mathrm { hc } } { \lambda _ { 2 } } – W = 4 (hcλ1W)\left( \frac { \mathrm { hc } } { \lambda _ { 1 } } - \mathrm { W } \right)

3W = 4hcλ1\frac { 4 \mathrm { hc } } { \lambda _ { 1 } }

W = hc3\frac { \mathrm { hc } } { 3 } [4λ11λ2]\left[ \frac { 4 } { \lambda _ { 1 } } - \frac { 1 } { \lambda _ { 2 } } \right]

= hc3\frac { \mathrm { hc } } { 3 } [4400×1091250×109]\left[ \frac { 4 } { 400 \times 10 ^ { - 9 } } - \frac { 1 } { 250 \times 10 ^ { - 9 } } \right]= hc3\frac { \mathrm { hc } } { 3 } × 109 × 150100×250\frac { 150 } { 100 \times 250 }

= 0.5 hc × 106 J