Solveeit Logo

Question

Question: When a mass m is connected individually to two springs S1 to S2, the oscillation frequencies are ![]...

When a mass m is connected individually to two springs S1 to S2, the oscillation frequencies are and . If the same mass is attached to the two springs as shown in figure, the oscillation frequency would be

A

1 + 2

B

v12+v22\sqrt { v _ { 1 } ^ { 2 } + v _ { 2 } ^ { 2 } }

C

(1v1+1v2)1\left( \frac { 1 } { v _ { 1 } } + \frac { 1 } { v _ { 2 } } \right) ^ { - 1 }

D

v12v22\sqrt { v _ { 1 } ^ { 2 } - v _ { 2 } ^ { 2 } }

Answer

v12+v22\sqrt { v _ { 1 } ^ { 2 } + v _ { 2 } ^ { 2 } }

Explanation

Solution

Let k1\mathrm { k } _ { 1 } and k2\mathrm { k } _ { 2 } be the spring constant of springs and respectively. Then

v1=12πk1 mv _ { 1 } = \frac { 1 } { 2 \pi } \sqrt { \frac { \mathrm { k } _ { 1 } } { \mathrm {~m} } }

And

If k is effective spring constant of two springs S1\mathrm { S } _ { 1 } and k=k1+k2\mathrm { k } = \mathrm { k } _ { 1 } + \mathrm { k } _ { 2 } ( springs are connected in parallel) if U is the effective frequency of oscillation when the mass m is attached to the sprins and S2\mathrm { S } _ { 2 } as shown in figure. Then

v=12πkm=12πk1+k2m=12πk1m+k2mv = \frac { 1 } { 2 \pi } \sqrt { \frac { k } { m } } = \frac { 1 } { 2 \pi } \sqrt { \frac { k _ { 1 } + k _ { 2 } } { m } } = \frac { 1 } { 2 \pi } \sqrt { \frac { k _ { 1 } } { m } + \frac { k _ { 2 } } { m } }

v=12π4π2v12+4π2v22v = \frac { 1 } { 2 \pi } \sqrt { 4 \pi ^ { 2 } v _ { 1 } ^ { 2 } + 4 \pi ^ { 2 } v _ { 2 } ^ { 2 } } (Using (1) and (ii))

=v12+v22= \sqrt { v _ { 1 } ^ { 2 } + v _ { 2 } ^ { 2 } }