Solveeit Logo

Question

Physics Question on Atomic Physics

When a hydrogen atom going from n=2n = 2 to n=1n = 1 emits a photon, its recoil speed is x5\frac{x}{5} m/s. Where x=x = \, _____. (Use: mass of hydrogen atom =1.6×1027kg= 1.6 \times 10^{-27} \, \text{kg})

Answer

Step 1: Calculate Energy Difference (ΔE\Delta E):

- The energy levels for n=1n = 1 and n=2n = 2 in a hydrogen atom are given by:

En=1=13.6 eV,En=2=3.4 eVE_{n=1} = -13.6 \text{ eV}, \quad E_{n=2} = -3.4 \text{ eV}

- The energy difference ΔE\Delta E when the atom transitions from n=2n = 2 to n=1n = 1 is:

ΔE=En=1En=2=13.6 eV+3.4 eV=10.2 eV\Delta E = E_{n=1} - E_{n=2} = -13.6 \text{ eV} + 3.4 \text{ eV} = 10.2 \text{ eV}

Step 2: Convert Energy to Joules: - 1 eV=1.6×1019 J1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}, so:

ΔE=10.2×1.6×1019 J=1.632×1018 J\Delta E = 10.2 \times 1.6 \times 10^{-19} \text{ J} = 1.632 \times 10^{-18} \text{ J}

Step 3: Calculate Recoil Speed (vv):

- Using v=ΔEmcv = \frac{\Delta E}{mc}, where m=1.6×1027 kgm = 1.6 \times 10^{-27} \text{ kg} and c=3×108 m/sc = 3 \times 10^8 \text{ m/s}:

v=1.632×10181.6×1027×3×108v = \frac{1.632 \times 10^{-18}}{1.6 \times 10^{-27} \times 3 \times 10^8}

- Simplify:

v=3.4 m/s=175 m/sv = 3.4 \text{ m/s} = \frac{17}{5} \text{ m/s}

Step 4: Determine xx:

- Since the recoil speed is x5\frac{x}{5}, we have x=17x = 17.

So, the correct answer is: x=17x = 17