Solveeit Logo

Question

Physics Question on Electromagnetic Spectrum

When a hydrogen atom emits a photon during a transition from n=4n = 4 to n=2n = 2, its recoil speed is about

A

4.28ms14.28\, ms^{-1}

B

0.814ms10.814\, ms^{-1}

C

2.07ms12.07\, ms^{-1}

D

0.407ms10.407\, ms^{-1}

Answer

0.814ms10.814\, ms^{-1}

Explanation

Solution

We know that momentum of a photon, p=hλp=\frac{h}{\lambda}
mv=hλv=hmλ\Rightarrow m v=\frac{h}{\lambda} \Rightarrow v=\frac{h}{m \lambda} ..(i)
[p=mv][\because p=m v]
Given, hydrogen atom emits a photon during a transition from n=4n=4 to n=2n=2, According to Bohr's formula for HH -atom, the wavelength of the emitted photon is given by
1λ=R(1n121n22)\therefore \frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
where, R=R= Rydberg's constant =1.097×107m1=1.097 \times 10^{7} m ^{-1}
1λ=1.097×107(122142)\Rightarrow \frac{1}{\lambda}=1.097 \times 10^{7}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)
λ=4.86×107m\Rightarrow \lambda=4.86 \times 10^{-7} m
\because Mass of a proton =1.6×1027kg=1.6 \times 10^{-27} kg
Now, from E (i), we get
Hence, recoil speed of photon,
v=6.62×10341.6×1027×4.86×107v = \frac{6.62 \times 10^{-34}}{1.6 \times 10^{-27} \times 4.86 \times 10^{-7}}
=0.8513m/s= 0.8513\,m/s
or v0.814ms1v \approx 0.814\,ms^{-1}