Solveeit Logo

Question

Question: When a decimolar solution of potassium ferricyanide is \(50\% \) dissociated at \(300{\text{ K}}\). ...

When a decimolar solution of potassium ferricyanide is 50%50\% dissociated at 300 K300{\text{ K}}. Calculate the osmotic pressure of the solution.

Explanation

Solution

To solve this we must know that a decimolar solution of potassium ferricyanide means that the concentration of the solution of potassium ferricyanide is 0.1 M0.1{\text{ M}}. The formula for potassium ferricyanide is K4[Fe(CN)6]{{\text{K}}_{\text{4}}}\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right]. K4[Fe(CN)6]{{\text{K}}_{\text{4}}}\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right] dissociates into four potassium i.e K+{{\text{K}}^ + } cations and one ferricyanide i.e. [Fe(CN)6]{\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right]^ - } anion.

Complete step-by-step answer:
We are given a decimolar solution of potassium ferricyanide. A decimolar solution of potassium ferricyanide means that the concentration of the solution of potassium ferricyanide is 0.1 M0.1{\text{ M}}.
The formula for potassium ferricyanide is K4[Fe(CN)6]{{\text{K}}_{\text{4}}}\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right]. K4[Fe(CN)6]{{\text{K}}_{\text{4}}}\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right] dissociates into four potassium i.e K+{{\text{K}}^ + } cations and one ferricyanide i.e. [Fe(CN)6]{\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right]^ - } anion. The dissociation reaction of potassium ferricyanide is as follows:
K4[Fe(CN)6]4K++[Fe(CN)6]{{\text{K}}_{\text{4}}}\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right] \rightleftharpoons 4{{\text{K}}^ + } + {\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right]^ - }
At equilibrium, the concentrations of all the species are as follows:
K4[Fe(CN)6]4K++[Fe(CN)6]{{\text{K}}_{\text{4}}}\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right] \rightleftharpoons 4{{\text{K}}^ + } + {\left[ {{\text{Fe}}{{\left( {{\text{CN}}} \right)}_{\text{6}}}} \right]^ - }
1α 4α α1 - \alpha \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ 4}}\alpha \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{ }}\alpha
The total number of moles at equilibrium are:
Total number of moles =(1α)+4α+α= \left( {1 - \alpha } \right) + 4\alpha + \alpha
Total number of moles =1+4α= 1 + 4\alpha

We are given that the solution of potassium ferricyanide is 50%50\% dissociated at 300 K300{\text{ K}}. Thus, α=50%=0.5\alpha = 50\% = 0.5.
Calculate the osmotic pressure of the solution using the equation as follows:
π=i×M×RT\pi = i \times M \times RT
Where, π\pi is the osmotic pressure,
MM is the molar concentration of the solution,
RR is the universal gas constant,
TT is the temperature in kelvin,
ii is the van’t Hoff factor of the solute.
We can calculate the van’t Hoff factor as follows:
i=1+4α1=1+4×0.5=3i = \dfrac{{1 + 4\alpha }}{1} = 1 + 4 \times 0.5 = 3
Substitute 0.1 M0.1{\text{ M}} for the molar concentration of the solution, 0.0821 L atm K1 mol10.0821{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} for the universal gas constant, 300 K300{\text{ K}} for the temperature, 3{\text{3}} for the van’t Hoff factor. Thus,
π=3×0.1 M×0.0821 L atm K1 mol1×300 K\Rightarrow \pi = 3 \times 0.1{\text{ M}} \times 0.0821{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} \times 300{\text{ K}}
π=7.38 atm\Rightarrow \pi = 7.38{\text{ atm}}

Thus, the osmotic pressure of the solution is 7.38 atm7.38{\text{ atm}}.

Note: The pressure applied to a pure solvent so that it does not pass into the given solution by osmosis is known as the osmotic pressure. Remember to calculate the van’t Hoff factor correctly. van’t Hoff factor is the number of ions a compound can form when dissolved in water.