Solveeit Logo

Question

Physics Question on laws of motion

When a body slides down from rest along a smooth inclined plane making an angle of 45?45^? with the horizontal, it takes time TT. When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to take time pTpT, where pp is some number greater than 11. The co-efficient of friction between the body and the rough plane is

A

1/p1 /p

B

μ\mu =(11/p2)=\left(1-1 /p^{2}\right)

C

1/p21 /p^{2}

D

2p2-p

Answer

μ\mu =(11/p2)=\left(1-1 /p^{2}\right)

Explanation

Solution

Given situations are shown in figure, For smooth inclined plane, Here, MgsinθMg \,sin \,\theta =Ma=Ma \Rightarrow a=gsinθa=g \,sin \,\theta Let s = Length of inclined plane Using, s=ut+12at2s=ut+\frac{1}{2}at^{2} \Rightarrow s=0×T+12s=0\times T+\frac{1}{2} (gsinθ)T2\left(g\,sin\,\theta\right)T^{2} (t=T)\left(\because\,t=T\right) \Rightarrow\quad s=12gsinθT2s=\frac{1}{2} g\, sin\, \theta\, T^{2} \Rightarrow s=122gT2s=\frac{1}{2\sqrt{2}}\,g \,T^{2} (θ=45)\left(\because\,\theta=45^{\circ}\right) ...(i)\quad...\left(i\right) For rough inclined plane. f=μNf=\mu N =μMgcosθ=\mu Mg\, cos\, \theta Mgsinθf=MaMg \,sin \,\theta-f=Ma' \Rightarrow a=(sinθμcosθ)ga'=\left(sin \,\theta-\mu cos \theta\right)g Using s=ut+12at2s=ut+\frac{1}{2}a' t^{2} \Rightarrow\quad s=0×(pT)+12(sinθμcosθ)g×p2T2s=0\times\left(pT\right)+\frac{1}{2}\left(sin \theta-\mu cos \theta\right)g\times p^{2}T^{2} (t=pT)\left(\because\,t=pT\right) \Rightarrow \quad s=122(1μ)gp2T2s=\frac{1}{2\sqrt{2}}\left(1-\mu\right)gp^{2}T^{2} (ii)\quad\ldots\left(ii\right) From equation (i) and (ii) 122gT2\frac{1}{2\sqrt{2}} gT^{2} =122(1μ)=\frac{1}{2\sqrt{2}} \left(1-\mu\right) gp2T2gp^{2}T^{2} \Rightarrow \quad 1=(1μ)p21=\left(1-\mu\right)p^{2} \Rightarrow μ=(11p2)\mu=\left(1-\frac{1}{p^{2}}\right)