Solveeit Logo

Question

Question: When a body slides down from rest along a smooth inclined plane making an angle of \(45 ^ { \circ }...

When a body slides down from rest along a smooth inclined plane making an angle of 4545 ^ { \circ } with the horizontal, it takes time t. When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it takes time pt, where p is same number greater than 1. The coefficient of friction between the body and the rough plane is :

A

μ=11p2\mu = 1 - \frac { 1 } { \mathrm { p } ^ { 2 } }

B

μ=11p2\mu = \sqrt { 1 - \frac { 1 } { \mathrm { p } ^ { 2 } } }

C

μ=1p2\mu = 1 - \mathrm { p } ^ { 2 }

D

μ=1p2\mu = \sqrt { 1 - \mathrm { p } ^ { 2 } }

Answer

μ=11p2\mu = 1 - \frac { 1 } { \mathrm { p } ^ { 2 } }

Explanation

Solution

The acceleration of the body sliding down smooth inclined plan is

a=gsinθa = g \sin \theta …..(i)

The acceleration of the same body sliding down a rough inclined plane is

a=gsinθμgcosθ=g(sinθμcosθ)a ^ { \prime } = g \sin \theta - \mu g \cos \theta = g ( \sin \theta - \mu \cos \theta ) … (ii)

As the body slides a distance d in each case,

d=12at2=12at2(u=0)\therefore d = \frac { 1 } { 2 } a t ^ { 2 } = \frac { 1 } { 2 } a ^ { \prime } t ^ { 2 } \quad ( \because u = 0 )

aa=t2t2=(pt)2t2=p2(t=pt(\therefore \frac { a } { a ^ { \prime } } = \frac { t ^ { \prime 2 } } { t ^ { 2 } } = \frac { ( p t ) ^ { 2 } } { t ^ { 2 } } = p ^ { 2 } ( \because t = p t ( Given ))) ) gsinθg(sinθμcosθ)=p2(using(\frac { g \sin \theta } { g ( \sin \theta - \mu \cos \theta ) } = p ^ { 2 } ( u \sin g ( i and (( ii ))) ) sinθ=p2sinθμp2cosθ\sin \theta = p ^ { 2 } \sin \theta - \mu p ^ { 2 } \cos \theta μp2cosθ=p2sinθsinθ\mu p ^ { 2 } \cos \theta = p ^ { 2 } \sin \theta - \sin \theta

μcosθ=(p21)p2sinθ\mu \cos \theta = \frac { \left( p ^ { 2 } - 1 \right) } { p ^ { 2 } } \sin \theta

μ=tanθ(11p2)\mu = \tan \theta \left( 1 - \frac { 1 } { p ^ { 2 } } \right)

Here θ=45\theta = 45 ^ { \circ }

μ=(11p2)\therefore \mu = \left( 1 - \frac { 1 } { p ^ { 2 } } \right)