Solveeit Logo

Question

Question: When \(4.215\,g\) of a metallic carbonate was heated in a hard glass tube, the \(C{O_2}\) evolved wa...

When 4.215g4.215\,g of a metallic carbonate was heated in a hard glass tube, the CO2C{O_2} evolved was found to measure 1336mL1336\,mL at 27C{27^ \circ }C and 700mm700\,mmpressure. The equivalent weight of the metal ((only integer part))is
(i) 1414
(ii) 1212
(iii) 1111
(iv) 1313

Explanation

Solution

Consider the metal carbonate to be M2CO3{M_2}C{O_3}. Upon heating the metal carbonate will evolveCO2C{O_2} gas according to the equation, M2CO3ΔM2O+CO2{M_2}C{O_3}\xrightarrow{\Delta }{M_2}O + C{O_2}. From the given data calculate the weight of CO2C{O_2} produced. Also according to the equation, the number of moles of M2CO3{M_2}C{O_3} taken is equal to the number of moles of CO2C{O_2} produced hence calculate the equivalent weight of the metal from here.

Complete step-by-step solution: Let us consider the formula of metallic carbonate isM2CO3{M_2}C{O_3}.
When the metallic carbonate is heated it produces the oxide of the metal and carbon dioxide.
M2CO3ΔM2O+CO2........(1){M_2}C{O_3}\xrightarrow{\Delta }{M_2}O + C{O_2}........\left( 1 \right)
Let us first calculate the weight of CO2C{O_2} obtained from the data given in the question.
Pressure =700mm=700760atm=0.921atm = \,700\,mm\, = \,\,\dfrac{{700}}{{760}}\,atm\,\, = \,0.921\,atm
Temperature =27C=(27+273)K=300K = \,{27^ \circ }C\, = \,\left( {27 + 273} \right)\,K\, = \,300\,K
Volume =1336mL=13361000L=1.336L = \,1336\,mL\, = \,\,\dfrac{{1336}}{{1000}}\,L\, = \,1.336\,L
We know, PV=nRT........(2)PV\, = \,nRT........\left( 2 \right) where n=mMn\, = \,\dfrac{m}{M} (m(mis the weight of CO2C{O_2} produced and MMis the molecular weight of CO2)C{O_2}\,).
Here the value of RR is 0.082LatmK1mol10.082\,L\,atm\,{K^{ - 1}}\,mo{l^{ - 1}} and molecular weight of CO2(M)=44gmol1C{O_2}\,(M)\, = \,44\,g\,mo{l^{ - 1}}
Putting the values in equation (2)\left( 2 \right) we get
0.921atm×1.336L=m44gmol1×0.082LatmK1mol1×300K0.921\,atm \times 1.336\,L\, = \,\dfrac{m}{{44\,g\,mo{l^{ - 1}}}} \times 0.082\,L\,atm\,{K^{ - 1}}\,mo{l^{ - 1}} \times 300\,K
m=0.921atm×1.336L×44gmol10.082LatmK1mol1×300K\Rightarrow \,m\, = \,\dfrac{{0.921\,atm \times 1.336\,L \times 44\,g\,mo{l^{ - 1}}}}{{0.082\,L\,atm\,{K^{ - 1}}\,mo{l^{ - 1}} \times 300\,K}}
m=2.2g\Rightarrow \,m\, = \,2.2\,g
From equation (1)\left( 1 \right) we can say that the number of moles of M2CO3{M_2}C{O_3} taken will be equal to the number of moles of CO2C{O_2} produced.
(n)M2CO3=(n)CO2\therefore \,{\left( n \right)_{{M_2}C{O_3}}} = {\left( n \right)_{C{O_2}}}
Number of moles of a compound =GivenWeightMolecularWeight = \,\,\dfrac{{Given\,Weight}}{{Molecular\,Weight}}
4.215MM2CO3=2.244.........(3)\therefore \,\,\dfrac{{4.215}}{{{M_{{M_2}C{O_3}}}}} = \dfrac{{2.2}}{{44}}.........\left( 3 \right), whereMM2CO3{M_{{M_2}C{O_3}}}is the molecular weight of the metallic carbonate.
Let the equivalent weight of the metal in M2CO3{M_2}C{O_3} be EE.
Now, MM2CO3=(2×E+60){M_{{M_2}C{O_3}}}\, = \,\left( {2 \times E + 60} \right) ((\,\because Molecular weight of CO3=60gmol1)C{O_3}\, = \,60\,g\,mo{l^{ - 1\,}})
Putting the value in equation (3)\left( 3 \right) we get
4.215(2E+60)=2.244\dfrac{{4.215}}{{\left( {2E + 60} \right)}} = \dfrac{{2.2}}{{44}}
2E+60=4.215×442.2=84.3\Rightarrow \,2E + 60 = \dfrac{{4.215 \times 44}}{{2.2}} = \,84.3
2E=(84.360)=24.3\Rightarrow \,2E\, = \,\left( {84.3 - 60} \right)\, = \,24.3
E=24.32=12.1512\Rightarrow \,E\, = \,\dfrac{{24.3}}{2} = \,12.15\, \sim 12
Therefore, the equivalent weight of the metal is 1212.

Hence the correct answer is (ii) 1212.

Note: The reaction must be properly balanced in order to avoid any error in the calculation of the equivalent weight of the metal. Also the units of pressure, temperature and volume must be converted properly and the RR value must be chosen accordingly. Do not mix up the units.