Solveeit Logo

Question

Question: When \(10\)mL \({\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}\)is oxidised by \(10\)mL ...

When 1010mL NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}is oxidised by 1010mL of 0.020.02 M MnO4{\text{MnO}}_4^ - . Hence 10 mL of NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}is neutralised by:
A. 1010mL of0.10.1M NaOH{\text{NaOH}}
B. 1010mL of0.020.02M NaOH{\text{NaOH}}
C. 1010mL of0.10.1M Ca(OH)2{\text{Ca(OH}}{{\text{)}}_2}
D. 1010mL of0.050.05M Ba(OH)2{\text{Ba(OH}}{{\text{)}}_2}

Explanation

Solution

The first reaction of NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}} with MnO4{\text{MnO}}_4^ - is the redox reaction. From this reaction we will determine the valance factor for MnO4{\text{MnO}}_4^ - so, we can determine its normality. Then by using normality and volume relation for titration we can determine the normality of NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}. Now, we know the in neutralization reaction normality and volume product for both the titrant and titrate will remain the same. So, after determining the normality of acid NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}, we will choose the base from the given option whose normality is same as for NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}.
Formula used: N1V1 = N2V2{{\text{N}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{N}}_{\text{2}}}{{\text{V}}_{\text{2}}}
Normality = molarity \timesvalence factor{\text{molarity}}\,\,{\text{ \times }}\,{\text{valence factor}}

Complete step-by-step answer:
The reaction of NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}with MnO4{\text{MnO}}_4^ - is the redox reaction.
In this redox reaction, MnO4{\text{MnO}}_4^ - is an oxidizing agent.C2O42{{\text{C}}_{\text{2}}}{\text{O}}_4^{2 - } oxidised to CO2{\text{C}}{{\text{O}}_{\text{2}}} and MnO4{\text{MnO}}_4^ - get reduce to Mn2 + {\text{M}}{{\text{n}}^{{\text{2 + }}}}.
Oxidation: C2+3O42C+4O2+2e\mathop {{{\text{C}}_{\text{2}}}}\limits_{ + 3} {\text{O}}_4^{2 - }\,\,\, \to \mathop {\text{C}}\limits_{ + 4} {{\text{O}}_{\text{2}}} + \,2{{\text{e}}^ - }
Reduction: Mn+7O4+5eMn2 + +5\mathop {{\text{Mn}}}\limits_{ + 7} {\text{O}}_4^ - \, + \,5{{\text{e}}^ - }\,\, \to \mathop {{\text{M}}{{\text{n}}^{{\text{2 + }}}}}\limits_{ + 5}
During the reaction MnO4{\text{MnO}}_4^ - is accepting five electrons, so the valence factor of MnO4{\text{MnO}}_4^ - is five.
Normality is determined by multiplying the molarity with valance factor.
Normality = molarity \timesvalence factor{\text{molarity}}\,\,{\text{ \times }}\,{\text{valence factor}}
So, normality of MnO4{\text{MnO}}_4^ - = molarity \times5{\text{molarity}}\,\,{\text{ \times }}\,\,{\text{5}}
On substituting 0.020.02M for molarity of MnO4{\text{MnO}}_4^ - ,
Normality of MnO4{\text{MnO}}_4^ - = 0.02 \times5{\text{0}}{\text{.02}}\,\,{\text{ \times }}\,\,{\text{5}}
Normality of MnO4{\text{MnO}}_4^ - = 0.1{\text{0}}{\text{.1}}N
Now, for complete the redox reaction, equivalent amount of both should be same so,
N1V1 = N2V2{{\text{N}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{N}}_{\text{2}}}{{\text{V}}_{\text{2}}}
Where,
N1{{\text{N}}_{\text{1}}}is the normality of the solution having V1{{\text{V}}_{\text{1}}}volume.
N2{{\text{N}}_{\text{2}}}is the normality of the solution having V2{{\text{V}}_{\text{2}}}volume.
We assume that N1{{\text{N}}_{\text{1}}} is the normality of C2O42{{\text{C}}_{\text{2}}}{\text{O}}_4^{2 - } and N2{{\text{N}}_{\text{2}}} is he normality of MnO4{\text{MnO}}_4^ - .
On substituting, 1010mL for V1{{\text{V}}_{\text{1}}}, 0.1{\text{0}}{\text{.1}}N for N1{{\text{N}}_{\text{1}}} and1010 mL forV2{{\text{V}}_{\text{2}}},
N1×10 = 0.1×10{{\text{N}}_{\text{1}}} \times \,10\,\,{\text{ = }}\,{\text{0}}{\text{.1}} \times \,10
N1 = 0.1N{{\text{N}}_{\text{1}}}{\text{ = }}\,{\text{0}}{\text{.1}}\,{\text{N}}
So, the normality of the C2O42{{\text{C}}_{\text{2}}}{\text{O}}_4^{2 - } is 0.1{\text{0}}{\text{.1}}N.
In neutralization reaction one equivalent of the acid completely reacts with one equivalent of base so the normality of the base will also be 0.1{\text{0}}{\text{.1}}N.
The base given option A is, 1010mL of0.10.1M NaOH{\text{NaOH}}.
The neutralization reaction of NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}} with NaOH is as follows:
NaHC2O4+NaOHNa2C2O4+H2O{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}\, + \,{\text{NaOH}}\, \to \,{\text{N}}{{\text{a}}_2}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}\, + \,{{\text{H}}_2}{\text{O}}
The NaOH dissociates as, NaOHNa++OH{\text{NaOH}}\, \to \,{\text{N}}{{\text{a}}^ + }\, + \,{\text{O}}{{\text{H}}^ - }
Due to exchange of one electron the valence factor for NaOH is one.
So, normality of NaOH = molarity \times1{\text{molarity}}\,{\text{ \times 1}}
Normality of NaOH = 0.1 \times1{\text{0}}{\text{.1 \times 1}}
Normality of NaOH = 0.1{\text{0}}{\text{.1}}N
So, when neutralization reaction take place, 1010 mL of 0.1{\text{0}}{\text{.1}} N C2O42{{\text{C}}_{\text{2}}}{\text{O}}_4^{2 - } will completely neutralised by 1010 mL of 0.1{\text{0}}{\text{.1}} N NaOH.
We can check it as,
NC2O42NC2O42 = NNaOHVNaOH{{\text{N}}_{{{\text{C}}_{\text{2}}}{\text{O}}_4^{2 - }}}{{\text{N}}_{{{\text{C}}_{\text{2}}}{\text{O}}_4^{2 - }}}\,{\text{ = }}\,{{\text{N}}_{{\text{NaOH}}}}{{\text{V}}_{{\text{NaOH}}}}
0.1×10 = 0.1×10{\text{0}}{\text{.1}}\, \times \,{\text{10}}\,{\text{ = }}\,{\text{0}}{\text{.1}}\, \times \,{\text{10}}
So, 10 mL of NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}is neutralised by 1010mL of0.10.1M NaOH{\text{NaOH}}.

Therefore, option (A) 1010mL of0.10.1M NaOH{\text{NaOH}} is correct.

Note: During acid-base titration neutralization reaction takes place. In this reaction known volume and unknown concentration of acid is titrated with a base. So, the concentration of the unknown is determined. Valency factor is the number of electrons gained or losses during a reaction for the proton donated. The valency factor for T NaHC2O4{\text{NaH}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}} in redox reaction is 22but the valency factor in neutralization reaction is 11.