Solveeit Logo

Question

Question: What will be the value of the given trigonometric expression? \(\dfrac{{\sin 3\theta + \sin 5\thet...

What will be the value of the given trigonometric expression?
sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θ\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}

Explanation

Solution

Hint: Rearrange the numerator and denominator terms in such a way that the sum of angles comes equal in magnitude, that is 9θ,3θ9\theta ,3\theta terms should be together and 5θ,7θ5\theta ,7\theta should be together. Then apply the trigonometric identity that sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) andcosC+cosD=2cos(C+D2)cos(CD2)\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right).

Complete step-by-step answer:

Given trigonometric equation is
sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θ\dfrac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }}
Rearrange its terms we have,
sin9θ+sin3θ+sin7θ+sin5θcos9θ+cos3θ+cos7θ+cos5θ\Rightarrow \dfrac{{\sin 9\theta + \sin 3\theta + \sin 7\theta + \sin 5\theta }}{{\cos 9\theta + \cos 3\theta + \cos 7\theta + \cos 5\theta }}
Now as we know sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) and cosC+cosD=2cos(C+D2)cos(CD2)\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) so use this property in above equation we have,
2sin(9θ+3θ2)cos(9θ3θ2)+2sin(7θ+5θ2)cos(7θ5θ2)2cos(9θ+3θ2)cos(9θ3θ2)+2cos(7θ+5θ2)cos(7θ5θ2)\Rightarrow \dfrac{{2\sin \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\sin \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}{{2\cos \left( {\dfrac{{9\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{9\theta - 3\theta }}{2}} \right) + 2\cos \left( {\dfrac{{7\theta + 5\theta }}{2}} \right)\cos \left( {\dfrac{{7\theta - 5\theta }}{2}} \right)}}
Now simplify the above equation we have,
2sin(6θ)cos(3θ)+2sin(6θ)cos(θ)2cos(6θ)cos(3θ)+2cos(6θ)cos(θ)\Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\sin \left( {6\theta } \right)\cos \left( \theta \right)}}{{2\cos \left( {6\theta } \right)\cos \left( {3\theta } \right) + 2\cos \left( {6\theta } \right)\cos \left( \theta \right)}}
2sin(6θ)(cos(3θ)+cos(θ))2cos(6θ)(cos(3θ)+cos(θ))\Rightarrow \dfrac{{2\sin \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}{{2\cos \left( {6\theta } \right)\left( {\cos \left( {3\theta } \right) + \cos \left( \theta \right)} \right)}}
Now cancel the common terms we have,
sin6θcos6θ=tan6θ\Rightarrow \dfrac{{\sin 6\theta }}{{\cos 6\theta }} = \tan 6\theta
So this is the required answer.
Hence option (C) is correct.

Note: The trick behind taking (9θ,3θ) and (7θ,5θ)(9\theta ,3\theta ){\text{ and }}\left( {7\theta ,5\theta } \right) terms together was to form same terms in both numerator and denominator so that they could be cancelled. It is advisable to remember trigonometric identities as it helps to save a lot of time and proves very useful while dealing with trigonometric problems.