Solveeit Logo

Question

Question: What will be the solubility of \({\text{AgCl}}\) in a 0.1 M \[{\text{KCl}}\] solution? (\[{{\text{K}...

What will be the solubility of AgCl{\text{AgCl}} in a 0.1 M KCl{\text{KCl}} solution? (Ksp AgCl = 1.20×10 - 10{{\text{K}}_{{\text{sp}}}}{\text{ AgCl = 1}}{\text{.20}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}})
A. 0.1 M\text{0.1 M}
B. 1.2×10 - 4{\text{1}}{\text{.2}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}M
C. 1.2×10 - 9{\text{1}}{\text{.2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}} M
D. 1.2×10 - 10{\text{1}}{\text{.2}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}M

Explanation

Solution

Write the dissociation reaction of AgCl(s){\text{AgCl(s)}}. Using the concentration of KCl{\text{KCl}} solution calculate the initial concentration of Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions. Using the solubility product of AgCl(s){\text{AgCl(s)}} and initial concentration of Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions calculate the solubility of AgCl(s){\text{AgCl(s)}}.

Formula Used: Ksp = [Ag+][Cl - ]{{\text{K}}_{{\text{sp}}}}{\text{ = }}[{\text{A}}{{\text{g}}^ + }]{\text{[C}}{{\text{l}}^{\text{ - }}}]

Complete answer:
For the given AgCl(s){\text{AgCl(s)}} salt we have to write the balanced dissociation reaction.
AgCl(s) Ag+(aq)+ Cl(aq){\text{AgCl(s)}} \rightleftharpoons {\text{ A}}{{\text{g}}^ + }{\text{(aq)}} + {\text{ C}}{{\text{l}}^ - }{\text{(aq)}}
We have to determine the solubility of AgCl(s){\text{AgCl(s)}} in 0.1M KCl{\text{KCl}} solution. As we know KCl{\text{KCl}} is a strong electrolyte so will completely dissociate into K + {{\text{K}}^{\text{ + }}} and Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions.
So, the initial concentration of Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions = 0.1M
The solubility product of AgCl(s){\text{AgCl(s)}} given to us is 1.20×10 - 10{\text{1}}{\text{.20}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}. The smaller value of the solubility product indicates that AgCl(s){\text{AgCl(s)}} is slightly soluble.
Assume solubility of AgCl(s){\text{AgCl(s)}} as ‘s’ M
So,‘s’ M of AgCl(s){\text{AgCl(s)}} after dissolution will give ‘s’ MAg+{\text{A}}{{\text{g}}^ + } and ‘s’ M Cl{\text{C}}{{\text{l}}^ - }.
We have 0.1M Cl - {\text{C}}{{\text{l}}^{\text{ - }}}ions from KCl{\text{KCl}} also so at equilibrium concentration of Cl{\text{C}}{{\text{l}}^ - } is (0.1+s) M
So, at equilibrium we have
[Ag+] = ‘s’M[{\text{A}}{{\text{g}}^ + }]{\text{ = ‘s’M}}
[Cl - ]=(0.1+s)M{\text{[C}}{{\text{l}}^{\text{ - }}}] = (0.1 + s){\text{M}}
Now, we will set up the solubility product equation for AgCl(s){\text{AgCl(s)}} as follows:
Ksp = [Ag+][Cl - ]{\text{Ksp = }}[{\text{A}}{{\text{g}}^ + }]{\text{[C}}{{\text{l}}^{\text{ - }}}]
Here, Ksp{\text{Ksp}} = solubility product
Now we have to substitute 1.20×10 - 10{\text{1}}{\text{.20}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} for solubility product, ‘s’ M for the concentration of Ag+{\text{A}}{{\text{g}}^ + } ion and (0.1+s)M0.1 + {\text{s}}){\text{M}} for the concentration of Cl{\text{C}}{{\text{l}}^ - } .
1.20×10 - 10=(s M)(0.1+s)M{\text{1}}{\text{.20}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} = ({\text{s M}})(0.1 + {\text{s}}){\text{M}}
Since the solubility of AgCl(s){\text{AgCl(s)}} is very less, we can neglect’ from 0.1+s
So, the equation will become as follows
1.20×10 - 10=(‘s’M)0.1M{\text{1}}{\text{.20}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} = ({\text{‘s’M}})0.1{\text{M}}
So, s = 1.20×10 - 9M{\text{s = 1}}{\text{.20}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{M}}
Thus, the solubility of AgCl(s){\text{AgCl(s)}} is 1.2×10 - 9M{\text{1}}{\text{.2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{M}}.

**Hence, the correct option is (C) 1.2×10 - 9M{\text{1}}{\text{.2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{M}}

Note:**
Due to the presence of common ion solubility of salt decreases. Here due to the presence of a common ion Cl{\text{C}}{{\text{l}}^ - } the solubility of AgCl(s){\text{AgCl(s)}} decreases. To simplify the calculation we have neglected ’s’ from 0.1+s else we would have ended up with a quadratic equation.