Solveeit Logo

Question

Question: What will be the projection of Vector IJK on IJ...

What will be the projection of Vector IJK on IJ

Answer

I+J

Explanation

Solution

To find the projection of vector A\vec{A} onto vector B\vec{B}, we use the formula:

projBA=ABB2B\text{proj}_{\vec{B}} \vec{A} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B}

First, we interpret the given vectors:

Vector IJK is interpreted as A=I+J+K\vec{A} = \vec{I} + \vec{J} + \vec{K}.

Vector IJ is interpreted as B=I+J\vec{B} = \vec{I} + \vec{J}.

Now, we proceed with the calculation:

  1. Calculate the dot product AB\vec{A} \cdot \vec{B}:

    AB=(I+J+K)(I+J)\vec{A} \cdot \vec{B} = (\vec{I} + \vec{J} + \vec{K}) \cdot (\vec{I} + \vec{J})

    Using the properties of unit vectors (II=1\vec{I} \cdot \vec{I} = 1, JJ=1\vec{J} \cdot \vec{J} = 1, KK=1\vec{K} \cdot \vec{K} = 1, and IJ=0\vec{I} \cdot \vec{J} = 0, etc.):

    AB=(1)(1)+(1)(1)+(1)(0)=1+1+0=2\vec{A} \cdot \vec{B} = (1)(1) + (1)(1) + (1)(0) = 1 + 1 + 0 = 2
  2. Calculate the square of the magnitude of B\vec{B}, i.e., B2|\vec{B}|^2:

    B=I+J\vec{B} = \vec{I} + \vec{J} B=12+12=1+1=2|\vec{B}| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} B2=(2)2=2|\vec{B}|^2 = (\sqrt{2})^2 = 2
  3. Substitute these values into the projection formula:

    projBA=ABB2B\text{proj}_{\vec{B}} \vec{A} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B} projBA=22(I+J)\text{proj}_{\vec{B}} \vec{A} = \frac{2}{2} (\vec{I} + \vec{J}) projBA=1(I+J)\text{proj}_{\vec{B}} \vec{A} = 1 \cdot (\vec{I} + \vec{J}) projBA=I+J\text{proj}_{\vec{B}} \vec{A} = \vec{I} + \vec{J}

Geometrically, projecting A=I+J+K\vec{A} = \vec{I} + \vec{J} + \vec{K} (vector to (1,1,1)) onto B=I+J\vec{B} = \vec{I} + \vec{J} (vector to (1,1,0) in the XY-plane) means finding the foot of the perpendicular from the tip of A\vec{A} to the line containing B\vec{B}. Since B\vec{B} lies in the XY-plane and A\vec{A} has a Z-component of 1, dropping a perpendicular from (1,1,1) onto the XY-plane results in the point (1,1,0), which is precisely the tip of B\vec{B}.