Solveeit Logo

Question

Question: What will be the E.M.F of the cell containing \[Z{n^{2 + }}/Zn\] and hydrogen gas electrode half cel...

What will be the E.M.F of the cell containing Zn2+/ZnZ{n^{2 + }}/Zn and hydrogen gas electrode half cells at 25C{25^ \circ }C if [Zn2+] = 0.24 M\left[ {Z{n^{2 + }}} \right]{\text{ = 0}}{\text{.24 M}}, [H+] = 1.6 M\left[ {{H^ + }} \right]{\text{ = 1}}{\text{.6 M}} and pH2 = 1.8 atm{p_{{H_2}}}{\text{ = 1}}{\text{.8 atm}}. It is also given that EZn = 0.763 V{E^ \circ }_{Zn}{\text{ = 0}}{\text{.763 V}} , also find ΔG\Delta G.

Explanation

Solution

We will find the E.M.F for cathode and anode separately with the help of Nernst equation of cell. After finding E.M.F of each cell we will find the E.M.F of the whole cell by subtracting E.M.F of anode from E.M.F of anode. Also the value of E{E^ \circ } for hydrogen gas is 0.00 V0.00{\text{ V}}.
Formula Used:
Ecathode/anode = Ecathode/anode - 0.0591n log[Q]{E_{{\text{cathode/anode}}}}{\text{ = }}{{\text{E}}^ \circ }_{{\text{cathode/anode}}}{\text{ - }}\dfrac{{0.0591}}{n}{\text{ log}}\left[ Q \right]

Complete answer:
The cell consists of a zinc electrode and a hydrogen electrode. Zinc electrodes will undergo oxidation and hereby hydrogen will act as a reduction electrode. Therefore we can say that zinc electrodes act as anode and hydrogen electrodes act as cathode. We will write half-cell reactions for both electrodes and then find their respective E.M.F as,
At anode:
At anode oxidation of zinc takes place as,
Zn(s)  Zn2+(aq.) + 2eZn(s){\text{ }} \to {\text{ Z}}{{\text{n}}^{2 + }}{\text{(aq}}{\text{.) + 2e}}
Also we are given with EZn = 0.763 V{E^ \circ }_{Zn}{\text{ = 0}}{\text{.763 V}} , from Nernst equation we know that,
Ecathode/anode = Ecathode/anode - 0.0591n log[Q]{E_{{\text{cathode/anode}}}}{\text{ = }}{{\text{E}}^ \circ }_{{\text{cathode/anode}}}{\text{ - }}\dfrac{{0.0591}}{n}{\text{ log}}\left[ Q \right]
Therefore we can write as,
EZn = EZn - 0.0591n log[Q]{E_{Zn}}{\text{ = }}{{\text{E}}^ \circ }_{Zn}{\text{ - }}\dfrac{{0.0591}}{n}{\text{ log}}\left[ Q \right]
Here n is the number of electrons which are involved in the reaction and Q is the reaction quotient of the reaction. We observe that two electrons take place in the reaction. Thus the Nernst equation can be deduced as,
EZn = EZn - 0.05912 log[Zn2+]{E_{Zn}}{\text{ = }}{{\text{E}}^ \circ }_{Zn}{\text{ - }}\dfrac{{0.0591}}{2}{\text{ log}}\left[ {Z{n^{2 + }}} \right]
EZn = 0.763 - 0.05912 log[0.24]{E_{Zn}}{\text{ = 0}}{\text{.763 - }}\dfrac{{0.0591}}{2}{\text{ log}}\left[ {0.24} \right] , using values [Zn2+] = 0.24 M\left[ {Z{n^{2 + }}} \right]{\text{ = 0}}{\text{.24 M}} and EZn = 0.763 V{E^ \circ }_{Zn}{\text{ = 0}}{\text{.763 V}}
EZn = 0.781 V{E_{Zn}}{\text{ = 0}}{\text{.781 V}}
At cathode:
Similarly we can find for cathode electrode as,
2H+(aq.) + 2e  H2(g) {\text{2}}{{\text{H}}^ + }{\text{(aq}}{\text{.) + 2e }} \to {\text{ }}{{\text{H}}_2}{\text{(g) }}
We can write Nernst equation for above cell reaction as,
EH2 = EH2 - 0.0591n log[Q]{E_{{H_2}}}{\text{ = }}{{\text{E}}^ \circ }_{{H_2}}{\text{ - }}\dfrac{{0.0591}}{n}{\text{ log}}\left[ Q \right]
The reaction quotient for reaction can be written as,
Q = pH2[H+]2Q{\text{ = }}\dfrac{{{p_{{H_2}}}}}{{{{\left[ {{H^ + }} \right]}^2}}}
According to question, pH2 = 1.8 atm{p_{{H_2}}}{\text{ = 1}}{\text{.8 atm}} and [H+] = 1.6 M\left[ {{H^ + }} \right]{\text{ = 1}}{\text{.6 M}} we get the reaction quotient as,
Q = 1.81.6 × 1.6Q{\text{ = }}\dfrac{{1.8}}{{1.6{\text{ }} \times {\text{ 1}}{\text{.6}}}}
Q = 0.703Q{\text{ = 0}}{\text{.703}}
Hence the Nernst equation can be written as,
EH2 = EH2 - 0.0591n log[Q]{E_{{H_2}}}{\text{ = }}{{\text{E}}^ \circ }_{{H_2}}{\text{ - }}\dfrac{{0.0591}}{n}{\text{ log}}\left[ Q \right]
Here the number of electrons is two and also EH2 = 0.00 V{E_{{H_2}}}{\text{ = 0}}{\text{.00 V}}.
EH2 = 0 - 0.05912 log[0.703]{E_{{H_2}}}{\text{ = 0 - }}\dfrac{{0.0591}}{2}{\text{ log}}\left[ {0.703} \right]
EH2 = 0.004 V{E_{{H_2}}}{\text{ = 0}}{\text{.004 V}}
Thus we get E.M.F for cathode and anode reaction. Now we will calculate E.M.F for whole cell as,
Ecell = Ecathode - Eanode{E_{cell}}{\text{ = }}{{\text{E}}_{cathode}}{\text{ - }}{{\text{E}}_{anode}}
Ecell = (0.004 - 0.703) V{E_{cell}}{\text{ = }}\left( {{\text{0}}{\text{.004 - 0}}{\text{.703}}} \right){\text{ V}}
Ecell = 0.699 V{E_{cell}}{\text{ = 0}}{\text{.699 V}}
We can also calculate the value of ΔG\Delta G for the cell as,
ΔG = - nFEcell\Delta G{\text{ = - nF}}{{\text{E}}_{cell}}
ΔG = - 2 × 96500 × 0.699 J\Delta G{\text{ = - 2 }} \times {\text{ 96500 }} \times {\text{ 0}}{\text{.699 J}}
ΔG = - 135 kJ\Delta G{\text{ = - 135 kJ}}
Hence the EMF of the cell is 0.699V.

Note:
The value of one faraday is equal to 96500 C96500{\text{ C}}. We can also find E.M.F of the cell by first finding the Ecell{E^ \circ }_{cell} and then by applying the Nernst equation. The standard reduction potential of a hydrogen cell is always zero, this is why it can be used as a reference electrode.