Solveeit Logo

Question

Question: What will be the \({E_{cell}}\) for the following cell : \(Pt{\text{ | }}{{\text{H}}_2}_{{\text{ }...

What will be the Ecell{E_{cell}} for the following cell :
Pt | H2 (1 atm) | H+0.001M |H+0.1M | H2(1atm) | Pt Pt{\text{ | }}{{\text{H}}_2}_{{\text{ }}\left( {1{\text{ atm}}} \right)}{\text{ | }}{{\text{H}}^ + }_{0.001M}{\text{ |}}{{\text{H}}^ + }_{0.1M}{\text{ | }}{{\text{H}}_2}_{\left( {1atm} \right)}{\text{ | Pt }}
(1.) 0.1182 V\left( {1.} \right){\text{ 0}}{\text{.1182 V}}
(2.) - 0.1182 V\left( {2.} \right){\text{ - 0}}{\text{.1182 V}}
(3.) 0.0591 V\left( {3.} \right){\text{ 0}}{\text{.0591 V}}
(4.) - 0.0591 V\left( {4.} \right){\text{ - 0}}{\text{.0591 V}}

Explanation

Solution

The relation between the cell potential , the standard cell potential and reaction quotient is given by the Nernst equation. The standard cell potential of a given cell is taken as zero. Since the partial pressure doesn’t change in a given cell, it can be ignored.
Formula used: Ecell = E cell - RTnFlnQc{E_{cell}}{\text{ = }}{{\text{E}}_{ \circ {\text{ cell}}}}{\text{ - }}\dfrac{{RT}}{{nF}}{\text{ln}}{{\text{Q}}_c}

Complete answer:
Firstly we will write the cell reactions taking place at cathode and anode.
At anode: H2 (1atm)  2H+(0.001M) + 2e{H_{2{\text{ }}}}_{\left( {1atm} \right)}{\text{ }}\xrightarrow{{}}{\text{ 2}}{{\text{H}}^ + }_{\left( {0.001M} \right)}{\text{ + 2e}}
At cathode :  2H+(0.1M) + 2e  H2 (1atm){\text{ 2}}{{\text{H}}^ + }_{\left( {0.1M} \right)}{\text{ + 2e }}\xrightarrow{{}}{\text{ }}{{\text{H}}_{2{\text{ }}\left( {1atm} \right)}}
On combining the above reactions we can see that the number of electrons is two. Thus , n = 2n{\text{ = 2}}. Now we will use Nernst equation in finding the Ecell{E_{cell}}. Therefore,
Ecell = E cell - RTnFlnQc{E_{cell}}{\text{ = }}{{\text{E}}_{ \circ {\text{ cell}}}}{\text{ - }}\dfrac{{RT}}{{nF}}{\text{ln}}{{\text{Q}}_c}
Here , E cell{E_{ \circ {\text{ cell}}}} is standard reduction potential of cell = 0 = {\text{ 0}}
Qc{Q_c} is the reaction quotient of the cell reactions. Here Qc = (0.001)2(0.1)2 × 1 atm1 atm{Q_c}{\text{ = }}\dfrac{{{{\left( {0.001} \right)}^2}}}{{{{\left( {0.1} \right)}^2}}}{\text{ }} \times {\text{ }}\dfrac{{1{\text{ atm}}}}{{1{\text{ atm}}}}.
T = 298 KT{\text{ = 298 K}} which is a standard temperature.
F = 96386 C , n = 2 , R = 8.314 J mol1 K1F{\text{ = 96386 C , n = 2 , R = 8}}{\text{.314 J mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}}
Now using the above values ,
Ecell = 0 V - 8.314 × 298 96368 × 2ln(0.001)2(0.1)2 × 1atm1atm{E_{cell}}{\text{ = 0 V - }}\dfrac{{8.314{\text{ }} \times {\text{ 298 }}}}{{96368{\text{ }} \times {\text{ 2}}}}\ln \dfrac{{{{\left( {0.001} \right)}^2}}}{{{{\left( {0.1} \right)}^2}}}{\text{ }} \times {\text{ }}\dfrac{{1atm}}{{1atm}}
Ecell = - 8.314 × 298 96368 × 2ln(103)2(101)2 {E_{cell}}{\text{ = - }}\dfrac{{8.314{\text{ }} \times {\text{ 298 }}}}{{96368{\text{ }} \times {\text{ 2}}}}\ln \dfrac{{{{\left( {{{10}^{ - 3}}} \right)}^2}}}{{{{\left( {{{10}^{ - 1}}} \right)}^2}}}{\text{ }}
Further simplifying the logarithm,
Ecell = - 0.0257  2ln(10)4 {E_{cell}}{\text{ = - }}\dfrac{{{\text{0}}{\text{.0257 }}}}{{{\text{ 2}}}}\ln {\left( {10} \right)^{ - 4}}{\text{ }}
To convert ln\ln to log\log we need to multiply with 2.3032.303 .
Ecell = 2.303 × 0.0257  2log(10)4 {E_{cell}}{\text{ = 2}}{\text{.303 }} \times {\text{ }}\dfrac{{{\text{0}}{\text{.0257 }}}}{{{\text{ 2}}}}\log {\left( {10} \right)^{ - 4}}{\text{ }}
Ecell = 4 × 2.303 × 0.0257  2log(10) {E_{cell}}{\text{ = 4 }} \times {\text{ 2}}{\text{.303 }} \times {\text{ }}\dfrac{{{\text{0}}{\text{.0257 }}}}{{{\text{ 2}}}}\log {\left( {10} \right)^{}}{\text{ }}
We know that log10(10) = 1{\log _{10}}\left( {10} \right){\text{ = 1}}
Ecell = 2 × 0.0591 {E_{cell}}{\text{ = 2 }} \times {\text{ 0}}{\text{.0591 }}
Ecell = 0.1182 V {E_{cell}}{\text{ = 0}}{\text{.1182 V }}
Therefore the e.m.f of the cell is Ecell = 0.1182 V {E_{cell}}{\text{ = 0}}{\text{.1182 V }} .

Additional information: The standard reduction potential values for hydrogen cells is zero. There is a separate table for the standard reduction potential values for different metals . Higher the value of reduction potential is the best oxidizing agent . Thus it has a great tendency to reduce itself and oxidize others.

Note:
The reaction quotient is the ratio of the concentration of product to reactants . It may also include the partial pressure of the gas exerted during the reaction. We prefer to do calculations in base ten log so always remember to convert it. Use the basic properties of logarithmic efficiently. The number of electrons which take part must be in a balanced reaction.