Solveeit Logo

Question

Question: What will be the boiling point of water if \[{{1 mole}}\] of \({{NaCl}}\) is dissolved in \({{1000 g...

What will be the boiling point of water if 1mole{{1 mole}} of NaCl{{NaCl}} is dissolved in 1000grams{{1000 grams}} of water?
A. 100.51oC{{100}}{{.51}}{{{ }}^{{o}}}{{C}}
B. 101.02oC{{101}}{{.02}}{{{ }}^{{o}}}{{C}}
C. 101.53oC{{101}}{{.53}}{{{ }}^{{o}}}{{C}}
D. 101.86oC{{101}}{{.86}}{{{ }}^{{o}}}{{C}}
E. 103.62oC{{103}}{{.62}}{{{ }}^{{o}}}{{C}}

Explanation

Solution

Molality is defined as the number of moles of solute perKg{{Kg}}of solvent. Every liquid boils at a particular temperature where the vapour pressure of liquid becomes equal to atmospheric pressure and elevation in boiling point is the increase in the boiling point of the solution with the addition of a non- volatile solute.

Complete step by step answer:
Molality is defined as number of moles of solute per kg{{kg}} of solvent i.e.
Molality=Moles  of  solute1  kg  of  solvent{{Molality = }}\dfrac{{{{Moles\; of\; solute}}}}{{{{1\; kg\; of \;solvent}}}}
In the above case 1mole{{1mole}} of NaCl{{NaCl}} is dissolved in 1000grams{{1000 grams}} of water
Molality=Number  of  moles  of  NaClMass  of  water  inkg{{Molality = }}\dfrac{{{{Number\; of \;moles \;of \;NaCl}}}}{{{{Mass\; of \;water\; in kg}}}}
Molality=1mol1000×1kg1000=1mol{{Molality = }}\dfrac{{{{1 mol}}}}{{\dfrac{{{{1000 \times 1 kg}}}}{{{{1000}}}}}}{{ = 1 mol}}
According to elevation in boiling point
Elevation in boiling point ΔTb{{\Delta }}{{{T}}_{{b}}} is directly proportional to molal concentration of solute
ΔTbαm{{\Delta }}{{{T}}_{{b}}}{{ \alpha m}}
ΔTb=iKbm{{\Delta }}{{{T}}_{{b}}}{{ = i}}{{{K}}_{{b}}}{{m}} Where Kb{{{K}}_{{b}}} is boiling point elevation constant and value of Kb{{{K}}_{{b}}} for water is 0.51Kkgmol1{{0}}{{.51 Kkgmo}}{{{l}}^{{{ - 1}}}}
i is Van’t Hoff factor and its value is 2 whereas 1molecule of NaCl{{NaCl}} gives 2 ions of dissociation.
ΔTb=2×0.51×1=1.02oC{{\Delta }}{{{T}}_{{b}}}{{ = 2 \times 0}}{{.51 \times 1 = 1}}{{.02}}{{{ }}^{{o}}}{{C}}
Thus the boiling point of pure water is 100oC{{100}}{{{ }}^{{o}}}{{C}}
Thus for aqueous NaCl{{NaCl}} boiling point of solution is
100+1.02=101.02oC{{100 + 1}}{{.02 = 101}}{{.02}}{{{ }}^{{o}}}{{C}}

So, the correct answer is B.

Additional information:
If in case w2gram{{{w}}_{{2}}}{{ gram}} of solute with molar mass M2{{{M}}_{{2}}} is dissolved in w1gram{{{w}}_{{1}}}{{ gram}} of solvent them molality  m{{molality \;m}} of the solution is given by
m=w2M2w11000=1000×w2M2×w1{{m = }}\dfrac{{\dfrac{{{{{w}}_{{2}}}}}{{{{{M}}_{{2}}}}}}}{{\dfrac{{{{{w}}_{{1}}}}}{{{{1000}}}}}}{{ = }}\dfrac{{{{1000 \times }}{{{w}}_{{2}}}}}{{{{{M}}_{{2}}}{{ \times }}{{{w}}_{{1}}}}}
On substituting the value of molality
ΔTb=Kb×1000×w2M2×w1{{\Delta }}{{{T}}_{{b}}}{{ = }}\dfrac{{{{{K}}_{{b}}}{{ \times 1000 \times }}{{{w}}_{{2}}}}}{{{{{M}}_{{2}}}{{ \times }}{{{w}}_{{1}}}}}
M2=1000×w2×KbΔTb×w1{{{M}}_{{2}}}{{ = }}\dfrac{{{{1000 \times }}{{{w}}_{{2}}}{{ \times }}{{{K}}_{{b}}}}}{{{{\Delta }}{{{T}}_{{b}}}{{ \times }}{{{w}}_{{1}}}}}

Note: The vapour pressure of solvent decreases in the presence of non-volatile solute. In such cases the solution should be boiled by applying a temperature greater than the boiling point of pure solvent such that its vapour pressure becomes equal to atmospheric pressure i.e. boiling point of solution will be always greater than boiling point of pure solvent thus the elevation in boiling point depends on the number of solvent molecules rather than their nature. When the solute is non-volatile only the solvent molecules contribute to the vapour pressure.
Elevation in boiling point is given as
ΔTb=TbTbo{{\Delta }}{{{T}}_{{b}}}{{ = }}{{{T}}_{{b}}}{{ - }}{{{T}}_{{b}}}^{{o}} Where Tb{{{T}}_{{b}}}the boiling is point of solution and Tbo{{{T}}_{{b}}}^{{o}}is the boiling point of solute.