Solveeit Logo

Question

Question: What will be maximum value of \({\text{3cos}}\theta {\text{ + 4sin}}\theta \) \( \left( a \rig...

What will be maximum value of 3cosθ + 4sinθ{\text{3cos}}\theta {\text{ + 4sin}}\theta
(a) - 5 (b) 5 (c) 25 (d) None of these  \left( a \right){\text{ - 5}} \\\ \left( b \right){\text{ 5}} \\\ \left( c \right){\text{ 25}} \\\ \left( d \right){\text{ None of these}} \\\

Explanation

Solution

Hint-Use the concept of maxima and minima.Highest and lowest point is generally the maxima and minima of a graph.

Here we have to find the maximum value of 3cosθ + 4sinθ{\text{3cos}}\theta {\text{ + 4sin}}\theta
So let f(θ)=3cosθ + 4sinθ{\text{f}}\left( \theta \right) = {\text{3cos}}\theta {\text{ + 4sin}}\theta
Now our first derivative f1(θ)=3sinθ+4cosθ{{\text{f}}^1}\left( \theta \right) = - 3\sin \theta + 4\cos \theta
Now double differentiating it we get f11(θ)=3cosθ4sinθ{{\text{f}}^{11}}\left( \theta \right) = - 3\cos \theta - 4\sin \theta
In order to find max and min value we have to make f1(θ)=0{{\text{f}}^1}\left( \theta \right) = 0
Hence  - 3sinθ + 4cosθ = 0{\text{ - 3sin}}\theta {\text{ + 4cos}}\theta {\text{ = 0}}
On solving above we get tanθ = 43{\text{tan}}\theta {\text{ = }}\dfrac{4}{3}
As we know that tanθ = PH{\text{tan}}\theta {\text{ = }}\dfrac{P}{H}
Hence our sinθ = 45 and cosθ = 35{\text{sin}}\theta {\text{ = }}\dfrac{4}{5}{\text{ and cos}}\theta {\text{ = }}\dfrac{3}{5}
Now for this value of sinθ and cosθ{\text{sin}}\theta {\text{ and cos}}\theta , the value of double derivative of f(θ)f(\theta ) should be less than zero as we have to find maximum value of the expression.
f11(θ)<0{{\text{f}}^{11}}\left( \theta \right) < 0
3cosθ4sinθ<0- 3\cos \theta - 4\sin \theta < 0
Putting the values
3(35)4(45)<0- 3\left( {\dfrac{3}{5}} \right) - 4\left( {\dfrac{4}{5}} \right) < 0
So max value of
3cosθ + 4sinθ=3×(35)+4×(45){\text{3cos}}\theta {\text{ + 4sin}}\theta = 3 \times \left( {\dfrac{3}{5}} \right) + 4 \times \left( {\dfrac{4}{5}} \right)
=255= \dfrac{{25}}{5}Which is equal to 5
Hence option (b) is the right answer.
Note- Whenever we face such a problem the key concept that we need to use is that we always put the first derivative equal to 0 to obtain the values. Now double differentiate and cross verify that whether the value obtained corresponds to maximum or minimum for the function. This helps in reaching the right answer.