Solveeit Logo

Question

Question: What will be equation of that chord of hyperbola \(25x^{2} - 16y^{2} = 400\), whose mid point is (5,...

What will be equation of that chord of hyperbola 25x216y2=40025x^{2} - 16y^{2} = 400, whose mid point is (5, 3)

A

115x117y=17115x - 117y = 17

B

125x48y=481125x - 48y = 481

C

127x+33y=341127x + 33y = 341

D

15x+121y=10515x + 121y = 105

Answer

125x48y=481125x - 48y = 481

Explanation

Solution

According to question, xy=c2/2xy = c^{2}/2Equation of required chord is S1=TS_{1} = T ......(i)

Here S1=25(5)216(3)2400S_{1} = 25(5)^{2} - 16(3)^{2} - 400 = 625144400=81625 - 144 - 400 = 81 and T=25xx116yy1400T = 25xx_{1} - 16yy_{1} - 400, where x1=5x_{1} = 5, t=t3t2t4t+tt = t^{3}t^{2} - t^{4}t^{'} + t^{'}

25x(5)16y(3)400=125x48y40025x(5) - 16y(3) - 400 = 125x - 48y - 400So, from (i)

required chord is 125x48y400=81125x - 48y - 400 = 81125x48y=481125x - 48y = 481