Solveeit Logo

Question

Question: What weight of \( FeS{O_4}{\text{ }}\left( {molecular{\text{ weight = 152}}} \right) \) will be oxid...

What weight of FeSO4 (molecular weight = 152)FeS{O_4}{\text{ }}\left( {molecular{\text{ weight = 152}}} \right) will be oxidised by 200 ml200{\text{ ml}} of normal KMnO4KMn{O_4} solution in acidic solution.
(i) 30.4 g(i){\text{ 30}}{\text{.4 g}}
(ii) 60.8 g(ii){\text{ 60}}{\text{.8 g}}
(iii) 121.6 g(iii){\text{ 121}}{\text{.6 g}}
(iv) 15.8 g(iv){\text{ 15}}{\text{.8 g}}

Explanation

Solution

The number of equivalents of FeSO4FeS{O_4} will be equal to the number of equivalents of KMnO4KMn{O_4} .
Then we will calculate the n-factor of each compound. With the help of the molarity equation we will find the number of moles of FeSO4FeS{O_4} . Thus we can find the weight of FeSO4FeS{O_4} .
M1V1 = M2V2{{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}}{\text{ = }}{{\text{M}}_2}{{\text{V}}_2}

Complete answer:
Since the number of equivalents of FeSO4FeS{O_4} is equal to the number of equivalents of KMnO4KMn{O_4} , we can find the number of moles of FeSO4FeS{O_4} . Firstly we find out the nn - factor of the KMnO4KMn{O_4} .
It can be calculated by using the below reduction process,
Mn+7  Mn+2M{n^{ + 7}}{\text{ }} \to {\text{ M}}{{\text{n}}^{ + 2}}
nn - factor is the change of oxidation state for a particular atom. For manganese nn - factor is 55 .
Let n1{{\text{n}}_{\text{1}}} be the number of moles of KMnO4KMn{O_4} and nf1{\text{n}}{{\text{f}}_1} be its nn - factor. Similarly n2{{\text{n}}_{\text{2}}} be the number of moles of FeSO4FeS{O_4} and nf2{\text{n}}{{\text{f}}_{\text{2}}} be its nn - factor.
Then we can write that,
n1 x nf1 = n2 × nf2{{\text{n}}_{\text{1}}}{\text{ x n}}{{\text{f}}_1}{\text{ = }}{{\text{n}}_2}{\text{ }} \times {\text{ n}}{{\text{f}}_2}
Also we know that, n = M × V{\text{n = M }} \times {\text{ V}} . Therefore we can write that,
M1V1 = n2 × nf2{{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}}{\text{ = }}{{\text{n}}_2}{\text{ }} \times {\text{ n}}{{\text{f}}_2}
Also nn - factor for FeSO4FeS{O_4} is equal to 11 .
× 2001000 = n2 × 1{\text{1 }} \times {\text{ }}\dfrac{{200}}{{1000}}{\text{ = }}{{\text{n}}_2}{\text{ }} \times {\text{ 1}}
Therefore, n2= 0.2{{\text{n}}_{\text{2}}} = {\text{ 0}}{\text{.2}}
The molecular weight of FeSO4FeS{O_4} is given as 152 g152{\text{ g}} . The mass of 0.2 mole 0.2{\text{ mole }} of FeSO4FeS{O_4} will be 152 × 0.2 = 30.4 g152{\text{ }} \times {\text{ 0}}{\text{.2 = 30}}{\text{.4 g}} .
Thus we can say that the amount of FeSO4FeS{O_4} oxidised will be equal to 30.4 g30.4{\text{ g}} by the given volume of KMnO4KMn{O_4} . Thus the correct answer is option (i) 30.4 g(i){\text{ 30}}{\text{.4 g}} .

Note:
The value of nn - factor can be obtained by the oxidation and reduction reaction. It is the change of oxidation state of the atom in respective compounds. Also the weight of a given compound is found by multiplying the number of moles with the molecular weight of the compound. Iron gets oxidised in the above reaction while manganese gets reduced. Iron changes its oxidation from Fe+2F{e^{ + 2}} to Fe+3F{e^{ + 3}} . This is because nn - factor is taken as one.