Solveeit Logo

Question

Question: What should be the \( pH \) at the equivalence point for the titration of \( 0.10M \) \( K{H_2}B{O_3...

What should be the pHpH at the equivalence point for the titration of 0.10M0.10M KH2BO3K{H_2}B{O_3} with 0.10M0.10M HClHCl . Ka  of  H2BO3=7.2×1010{K_a}\;of\;{H_2}B{O_3} = 7.2 \times {10^{ - 10}}

Explanation

Solution

The pHpH scale is used to compute the acidity and basicity level of the substance. With the help of pHpH , we can tell whether the given solution is base or acid. It is the negative of the logarithm base 1010 of hydrogen ion (H+)\left( {{H^ + }} \right) activity. To find the pHpHvalue we use following formula:
Ka=[H+][A][HA]{K_a} = \dfrac{{\left[ {{H^ + }} \right]\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}
Where, Ka=  acid  dissociation  constant{K_a} = \;acid\;dissociation\;constant
[A]=concentration of the conjugate base of the acid\left[ {{A^ - }} \right] = concentration{\text{ }}of{\text{ }}the{\text{ }}conjugate{\text{ }}base{\text{ }}of{\text{ }}the{\text{ }}acid
[H+]=concentration of hydrogen ions\left[ {{H^ + }} \right] = concentration{\text{ }}of{\text{ }}hydrogen{\text{ }}ions
[HA]=concentration of chemical species HA\left[ {HA} \right] = concentration{\text{ }}of{\text{ }}chemical{\text{ }}species{\text{ }}HA .

Complete answer:
The pHpH value is used to determine acidic and basic nature of the solution. If the pHpH value of the solution is less than 77 then it is acidic in nature and if the pHpH value of the solution is more than 77 then it is basic in nature. The value of pHpH can be lower than 00 which means it can be negative and greater than 1414 when the solution is strong acid and base respectively.
To find the pHpH of the given compound we need the value of Ka{K_a} and concentration of the given compound. In this question the value of Ka{K_a} is 7.2×10107.2 \times {10^{ - 10}} , thus the chemical equation is:
H2BO3+  H3O+H3BO3+  H2O{H_2}B{O_3}^ - + \;{H_3}{O^ + } \to {H_3}B{O_3} + \;{H_2}O
At the equivalence point,
[H3BO3]=0.10×V2V\left[ {{H_3}B{O_3}} \right] = \dfrac{{0.10 \times V}}{{2V}}
[H3BO3]=0.05M\Rightarrow \left[ {{H_3}B{O_3}} \right] = 0.05M
For the first ionisation step of H3BO3{H_3}B{O_3} is very important to the pHpH
Thus, to find the pHpH we will use above formula which is:
Ka=[H+][A][HA]{K_a} = \dfrac{{\left[ {{H^ + }} \right]\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}
Ka=[H3O+][H2BO3][H3BO3]{K_a} = \dfrac{{\left[ {{H_3}{O^ + }} \right]\left[ {{H_2}B{O_3}^ - } \right]}}{{\left[ {{H_3}B{O_3}} \right]}}
Ka=x20.05\Rightarrow {K_a} = \dfrac{{{x^2}}}{{0.05}}
On substituting the value of Ka{K_a} we will get:
7.2×1010=x20.05\Rightarrow 7.2 \times {10^{ - 10}} = \dfrac{{{x^2}}}{{0.05}}
x=6.0×106\Rightarrow x = 6.0 \times {10^{ - 6}}
Now we will use this value of xx for the calculation of pHpH value. Thus, we have:
pH=log[H+]pH = - \log \left[ {{H^ + }} \right]
pH=log[x]\Rightarrow pH = - \log \left[ x \right]
pH=log[6.0×106]\Rightarrow pH = - \log \left[ {6.0 \times {{10}^{ - 6}}} \right]
pH=[5.22]\Rightarrow pH = - \left[ { - 5.22} \right]
pH=5.22\Rightarrow pH = 5.22
Thus this is the required answer.

Note:
In the word pHpH , pp stands for power and HH for hydrogen thus it means power of hydrogen. The Ka{K_a} is termed as the acid dissociation constant, it means it calculates the strength of the acid which means how strong the acid is. Stronger the acid dissociation, lower will be the value of pHpH .