Question
Question: What should be the increase in kinetic energy of an electron in order to decrease its de-Broglie wav...
What should be the increase in kinetic energy of an electron in order to decrease its de-Broglie wavelength from 100 nm to 50 nm?
[h = 6 x 10-34 J.s, mₑ = 9 × 10-31 kg, 1 eV = 1.6 × 10-19]

0.451 eV
3.75 × 10-4 eV
4.51 x 10-3 eV
0.0375 eV
3.75 × 10-4 eV
Solution
The de-Broglie wavelength (λ) of a particle is related to its momentum (p) by the formula:
λ=ph
where h is Planck's constant.
The kinetic energy (KE) of a particle with mass m and momentum p is given by:
KE=2mp2
From this, we can express momentum as p=2mKE.
Substitute the expression for p into the de-Broglie wavelength formula:
λ=2mKEh
To find the kinetic energy in terms of wavelength, rearrange the formula:
λ2=2mKEh2
KE=2mλ2h2
Let KE1 be the initial kinetic energy corresponding to λ1=100 nm, and KE2 be the final kinetic energy corresponding to λ2=50 nm.
Given values:
h=6×10−34 J.s
me=9×10−31 kg
λ1=100 nm=100×10−9 m=1×10−7 m
λ2=50 nm=50×10−9 m=5×10−8 m
1 eV=1.6×10−19 J
The increase in kinetic energy is ΔKE=KE2−KE1.
ΔKE=2meλ22h2−2meλ12h2
ΔKE=2meh2(λ221−λ121)
Calculate the common factor 2meh2:
2meh2=2×(9×10−31 kg)(6×10−34 J.s)2=18×10−3136×10−68=2×10−37 J.m2
Calculate the term in the parenthesis:
λ221=(5×10−8 m)21=25×10−16 m21=2.5×10−15 m21=0.4×1015 m−2=4×1014 m−2
λ121=(1×10−7 m)21=1×10−14 m21=1×1014 m−2
Now, substitute these values back into the ΔKE equation:
ΔKE=(2×10−37 J.m2)×(4×1014 m−2−1×1014 m−2)
ΔKE=(2×10−37 J.m2)×(3×1014 m−2)
ΔKE=6×10−23 J
Finally, convert the energy from Joules to electron volts (eV):
ΔKE(eV)=1.6×10−19 J/eV6×10−23 J
ΔKE(eV)=1.66×10−23−(−19) eV
ΔKE(eV)=3.75×10−4 eV