Solveeit Logo

Question

Question: What should be the freezing point of aqueous solution containing 17 gm of C₂H₅OH is 100 gm of water....

What should be the freezing point of aqueous solution containing 17 gm of C₂H₅OH is 100 gm of water. (Kf for water = 1.86)

Answer

-6.87 °C

Explanation

Solution

The freezing point of an aqueous solution is given by the formula:

Tf=Tf0ΔTfT_f = T_f^0 - \Delta T_f

where Tf0T_f^0 is the freezing point of the pure solvent (water), and ΔTf\Delta T_f is the depression in freezing point. The depression in freezing point is a colligative property given by:

ΔTf=Kf×m\Delta T_f = K_f \times m

where KfK_f is the cryoscopic constant of the solvent, and mm is the molality of the solution.

First, calculate the molality (mm) of the solution. Molality is defined as the number of moles of solute per kilogram of solvent. The solute is C₂H₅OH (ethanol). Mass of solute = 17 gm. The molar mass of C₂H₅OH is calculated from the atomic masses: Molar mass of C₂H₅OH = (2 × atomic mass of C) + (6 × atomic mass of H) + (1 × atomic mass of O) Molar mass of C₂H₅OH = (2 × 12.01 g/mol) + (6 × 1.008 g/mol) + (1 × 15.999 g/mol) Molar mass of C₂H₅OH = 24.02 g/mol + 6.048 g/mol + 15.999 g/mol = 46.067 g/mol. Using the approximate value 46 g/mol: Number of moles of C₂H₅OH = Mass of soluteMolar mass of solute=17 gm46 gm/mol\frac{\text{Mass of solute}}{\text{Molar mass of solute}} = \frac{17 \text{ gm}}{46 \text{ gm/mol}}.

The solvent is water. Mass of solvent = 100 gm. Convert the mass of solvent to kilograms: Mass of solvent in kg = 100 gm1000 gm/kg=0.1 kg\frac{100 \text{ gm}}{1000 \text{ gm/kg}} = 0.1 \text{ kg}.

Now, calculate the molality (mm): m=Number of moles of soluteMass of solvent in kg=17/46 mol0.1 kg=1746×0.1 mol/kg=174.6 mol/kgm = \frac{\text{Number of moles of solute}}{\text{Mass of solvent in kg}} = \frac{17/46 \text{ mol}}{0.1 \text{ kg}} = \frac{17}{46 \times 0.1} \text{ mol/kg} = \frac{17}{4.6} \text{ mol/kg}. m=17046 mol/kg=8523 mol/kg3.69565 mol/kgm = \frac{170}{46} \text{ mol/kg} = \frac{85}{23} \text{ mol/kg} \approx 3.69565 \text{ mol/kg}.

The cryoscopic constant for water (KfK_f) is given as 1.86 °C kg/mol. Calculate the depression in freezing point (ΔTf\Delta T_f): ΔTf=Kf×m=1.86 °C kg/mol×17046 mol/kg\Delta T_f = K_f \times m = 1.86 \text{ °C kg/mol} \times \frac{170}{46} \text{ mol/kg}. ΔTf=1.86×17046=316.2466.8739 °C\Delta T_f = 1.86 \times \frac{170}{46} = \frac{316.2}{46} \approx 6.8739 \text{ °C}.

The freezing point of pure water (Tf0T_f^0) is 0 °C. The freezing point of the solution (TfT_f) is: Tf=Tf0ΔTf=0 °C6.8739 °C=6.8739 °CT_f = T_f^0 - \Delta T_f = 0 \text{ °C} - 6.8739 \text{ °C} = -6.8739 \text{ °C}.

Rounding to two decimal places, the freezing point is -6.87 °C.