Solveeit Logo

Question

Question: What is the wavelength of the radiation emitted when the electron in a H-atom jumps from n = $\infty...

What is the wavelength of the radiation emitted when the electron in a H-atom jumps from n = \infty to n=2?

A

400 nm

B

420 nm

C

350 nm

D

365 nm

Answer

365 nm

Explanation

Solution

The wavelength of the radiation emitted when an electron in a H-atom jumps from a higher energy level (nin_i) to a lower energy level (nfn_f) can be calculated using the Rydberg formula:

1λ=RH(1nf21ni2)\frac{1}{\lambda} = R_H \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right)

Where: λ\lambda = wavelength of the emitted radiation RHR_H = Rydberg constant (1.097×107 m11.097 \times 10^7 \text{ m}^{-1}) nin_i = initial principal quantum number = \infty nfn_f = final principal quantum number = 2

Substitute the given values into the formula: 1λ=1.097×107 m1(12212)\frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \left( \frac{1}{2^2} - \frac{1}{\infty^2} \right) 1λ=1.097×107 m1(140)\frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \left( \frac{1}{4} - 0 \right) 1λ=1.097×107 m1×14\frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \times \frac{1}{4} 1λ=0.27425×107 m1\frac{1}{\lambda} = 0.27425 \times 10^7 \text{ m}^{-1} 1λ=2.7425×106 m1\frac{1}{\lambda} = 2.7425 \times 10^6 \text{ m}^{-1}

Now, calculate λ\lambda: λ=12.7425×106 m1\lambda = \frac{1}{2.7425 \times 10^6 \text{ m}^{-1}} λ0.3646×106 m\lambda \approx 0.3646 \times 10^{-6} \text{ m}

To convert meters to nanometers (nm), multiply by 10910^9: λ0.3646×106×109 nm\lambda \approx 0.3646 \times 10^{-6} \times 10^9 \text{ nm} λ364.6 nm\lambda \approx 364.6 \text{ nm}

This value is approximately 365 nm.