Solveeit Logo

Question

Question: What is the value of \( \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \...

What is the value of limxx2sin(1x)\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) ?

Explanation

Solution

Hint : We first change the variable of the limit with the conversion of 1x=z\dfrac{1}{x}=z . The limit value of the function also changes from xx\to \infty to z0z\to 0 . We change all the variables from xx to zz as limxx2sin(1x)=limz0sinzz2\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}} . We use the theorems limxaf(x)g(x)=limxaf(x)×limxag(x)\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\times \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) and limz0sinzz=1\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}=1 . We put the values to get limxx2sin(1x)=\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\infty .

Complete step by step solution:
First, we try to change the variable for the given limit value of limxx2sin(1x)\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) .
We use the conversion of 1x=z\dfrac{1}{x}=z . The given limit form is xx\to \infty .
Due to the change of the variable the limit also changes to z=1x0z=\dfrac{1}{x}\to 0 .
The value of the xx becomes x=1zx=\dfrac{1}{z} .
The function changes to limxx2sin(1x)=limz01z2sinz=limz0sinzz2\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{{{z}^{2}}}\sin z=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}} .
Now we are going to apply the limit theorem of limxaf(x)g(x)=limxaf(x)×limxag(x)\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\times \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) .
Therefore, limz0sinzz2=limz0(sinzz×1z)=limz0sinzz×limz01z\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}}=\underset{z\to 0}{\mathop{\lim }}\,\left( \dfrac{\sin z}{z}\times \dfrac{1}{z} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}\times \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z} .
Now we have the limit theorem limz0sinzz=1\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}=1 .
We apply the theorem to get limz0sinzz×limz01z=limz01z\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}\times \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z}=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z} .
Now we apply the limit value to get limz01z=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z}=\infty .
Therefore, limxx2sin(1x)=limz0sinzz2=\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}}=\infty .
The limit value of limxx2sin(1x)\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) is \infty .
So, the correct answer is “ \infty”.

Note : The precise definition of a limit is something we use as a proof for the existence of a limit. When we’re evaluating a limit, we’re looking at the function as it approaches a specific point. we approach a particular value of x, the function itself gets closer and closer to a particular value.