Question
Question: What is the value of \( \underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x...
What is the value of x→∞lim(1+x1)x ?
Solution
Hint : We have to use the function change for the limit x→∞lim(1+x1)x . The change gives the logarithm form. We have to take logarithm function on both sides of the equation p=z→0lim(1+z)z1 . Then we use the limit formula of x→0limxlog(1+x)=1 . Using the logarithm omission, we get p=x→∞lim(1+x1)x=e .
Complete step by step solution:
Let us take the limit as p=x→∞lim(1+x1)x . We first interchange the variable of the given function x=z1 .
The limit also changes with the change of the variable.
Therefore,
x | ∞ |
---|---|
z | 0 |
Therefore, p=x→∞lim(1+x1)x=z→0lim(1+z)z1 .
Now we try to find the limit value of the function suing logarithm.
We take logarithm mon the both sides of the function p=z→0lim(1+z)z1 .
So, \log \left( p \right)=\log \left\\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\} .
We know that \log \left\\{ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right\\}=\underset{x\to a}{\mathop{\lim }}\,\left[ \log \left\\{ f\left( x \right) \right\\} \right] .
Therefore, \log \left( p \right)=\log \left\\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\}=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\} \right] .
Now we use the logarithm formula of logax=xloga .
Therefore, \log \left\\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\}=\dfrac{1}{z}\log \left( 1+z \right)=\dfrac{\log \left( 1+z \right)}{z} .
The limit becomes \log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\} \right]=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z} .
We know the limit value of x→0limxlog(1+x)=1 .
Therefore, log(p)=z→0limzlog(1+z)=1 .
Now we try to omit the logarithm of the equation log(p)=1 using the formula of logea=y⇒a=ey .
So, log(p)=1 gives p=e1=e . This gives p=x→∞lim(1+x1)x=e .
The value of limit x→∞lim(1+x1)x is e .
So, the correct answer is “e”.
Note : We can also directly use the limit formula of p=z→0lim(1+z)z1=e . The formulas p=x→∞lim(1+x1)x=z→0lim(1+z)z1 are the derivation of two formulas for one another.