Solveeit Logo

Question

Question: What is the value of \( \underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x...

What is the value of limx(1+1x)x\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} ?

Explanation

Solution

Hint : We have to use the function change for the limit limx(1+1x)x\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} . The change gives the logarithm form. We have to take logarithm function on both sides of the equation p=limz0(1+z)1zp=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} . Then we use the limit formula of limx0log(1+x)x=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1 . Using the logarithm omission, we get p=limx(1+1x)x=ep=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=e .

Complete step by step solution:
Let us take the limit as p=limx(1+1x)xp=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} . We first interchange the variable of the given function x=1zx=\dfrac{1}{z} .
The limit also changes with the change of the variable.
Therefore,

x\infty
z0

Therefore, p=limx(1+1x)x=limz0(1+z)1zp=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} .
Now we try to find the limit value of the function suing logarithm.
We take logarithm mon the both sides of the function p=limz0(1+z)1zp=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} .
So, \log \left( p \right)=\log \left\\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\} .
We know that \log \left\\{ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right\\}=\underset{x\to a}{\mathop{\lim }}\,\left[ \log \left\\{ f\left( x \right) \right\\} \right] .
Therefore, \log \left( p \right)=\log \left\\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\}=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\} \right] .
Now we use the logarithm formula of logax=xloga\log {{a}^{x}}=x\log a .
Therefore, \log \left\\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\}=\dfrac{1}{z}\log \left( 1+z \right)=\dfrac{\log \left( 1+z \right)}{z} .
The limit becomes \log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\\} \right]=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z} .
We know the limit value of limx0log(1+x)x=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1 .
Therefore, log(p)=limz0log(1+z)z=1\log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z}=1 .
Now we try to omit the logarithm of the equation log(p)=1\log \left( p \right)=1 using the formula of logea=ya=ey{{\log }_{e}}a=y\Rightarrow a={{e}^{y}} .
So, log(p)=1\log \left( p \right)=1 gives p=e1=ep={{e}^{1}}=e . This gives p=limx(1+1x)x=ep=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=e .
The value of limit limx(1+1x)x\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} is ee .
So, the correct answer is “e”.

Note : We can also directly use the limit formula of p=limz0(1+z)1z=ep=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}}=e . The formulas p=limx(1+1x)x=limz0(1+z)1zp=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} are the derivation of two formulas for one another.