Solveeit Logo

Question

Question: What is the value of \(\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ ...

What is the value of tan7tan23tan60tan67tan83\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }?
a)13 b)3 c)1 d)  a)\,\dfrac{1}{{\sqrt 3 }} \\\ b)\,\sqrt 3 \\\ c)\,1 \\\ d)\,\infty \\\

Explanation

Solution

You should know that tan(90θ)=cotθ&tanθ=1cotθ\tan \left( {90 - \theta } \right) = \cot \theta \,\,\,\& \,\,\tan \theta = \dfrac{1}{{\cot \theta }}\,or tanθ.cotθ=1\tan \theta . \cot \theta = 1 using these formulas you can get the required answer.

Formula used:
Complete step-by-step answer:
According to the question we need to find the value of tan7tan23tan60tan67tan83\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }
So as we know that the table that is given below:

So here we know the value of tan60\tan {60^ \circ }but we don’t know the value of tan7,tan23,tan67,tan83\tan {7^ \circ },\tan {23^ \circ },\tan {67^ \circ },\tan {83^ \circ }
Now we can convert any two of the tan7\tan {7^ \circ }\,\,or tan23\tan {23^ \circ } into cotθ\cot \theta by using the formula tanθ=cot(90θ)\tan \theta = \cot \left( {90 - \theta } \right)
So if θ=7\theta = {7^ \circ }, then
tan7=cot(907) tan7=cot(83)  \tan 7 = \cot \left( {90 - 7} \right) \\\ \tan 7 = \cot \left( {83} \right) \\\
So if θ=23\theta = {23^ \circ }, then
tan23=cot(9023) tan23=cot(67)  \tan 23 = \cot \left( {90 - 23} \right) \\\ \tan 23 = \cot \left( {67} \right) \\\
So we need to find the value of tan7tan23tan60tan67tan83\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }
Now replace tan7\tan {7^ \circ }\,\,and tan23\tan {23^ \circ } with cot83\cot {83^{ \circ \,}}\,\,\,and cot67\cot {67^ \circ } respectively.
So we will get, cot83cot67tan60tan67tan83\cot {83^ \circ }\cot {67^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }
Now after rearranging
(cot83tan83)tan60(tan67cot67)(\cot {83^ \circ }\tan {83^ \circ })\tan {60^ \circ }(\tan {67^ \circ }\cot {67^ \circ })
We know that tanθcotθ=1\tan \theta \cot \theta = 1. So using we get
(cot83tan83)=1(\cot {83^ \circ }\tan {83^ \circ }) = 1
And (tan67cot67)=1(\tan {67^ \circ }\cot {67^ \circ }) = 1
Putting these value we get,
(1)×tan60×(1)(1) \times \tan {60^ \circ } \times (1)
And we know that tan60=3\tan {60^ \circ } = \sqrt 3
So we get the product of tan7tan23tan60tan67tan83\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ } =3= \sqrt 3

So, the correct answer is “Option B”.

Note: We should learn standard trigonometric angles of sinθ,cosθ&tanθ\sin \theta ,\cos \theta \,\& \tan \theta .

And we should know the relations tanθ.cotθ=1,cosθ.secθ=1,cosecθ.sinθ=1\tan \theta . \cot \theta = 1,\cos \theta . \sec \theta = 1, \cos ec \theta . \sin \theta = 1.Students should also remember trigonometric formulas and identities for solving these types of problems.