Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

What is the value of tan1x+cot1x\tan^{-1} x + \cot^{-1} x ?

A

π2forx>0andπ2forx<0\frac{\pi}{2}\, \text{for} \,x > 0 \text{and} - \,\frac{\pi}{2} \,\text{for}\, x < 0

B

π2forallx\frac{\pi}{2} \,\text{for}\, \text{all}\, x

C

π2forallx- \frac{\pi}{2} \,\text{for}\, \text{all}\, x

D

π2forintegralx\frac{\pi}{2}\, \text{for} \,\text{integral} \,x

Answer

π2forallx\frac{\pi}{2} \,\text{for}\, \text{all}\, x

Explanation

Solution

Let tan1x=p\tan^{-1} x = p so, tanp=x\tan p = x tanp=cot(π2p)\tan p = \cot \left(\frac{\pi}{2} - p \right) x=cot(π2p)cot1x=π2p\Rightarrow x = \cot \left(\frac{\pi}{2} - p \right) \Rightarrow \cot^{-1} x = \frac{\pi}{2} - p So, tan1x+cot1x=p+π2p \tan^{-1} x + \cot^{-1} x = p + \frac{\pi}{2} - p =π2,xR= \frac{\pi}{2} , \forall x \in R