Solveeit Logo

Question

Question: What is the value of \( \sin \left( {\dfrac{{17\pi }}{{12}}} \right) \) ?...

What is the value of sin(17π12)\sin \left( {\dfrac{{17\pi }}{{12}}} \right) ?

Explanation

Solution

Hint : Sine function is periodic with the period of 2nπ2n\pi and so we will convert the given degrees of angle of sine in the form of the 2nπ2n\pi finding the correlation then will identify the location of the angle in the quadrant then will apply All STC rule for the resultant required value.

Complete step-by-step answer :
Take the given expression: sin(17π12)\sin \left( {\dfrac{{17\pi }}{{12}}} \right)
The above expression can be re-written: sin(17π12)=sin(5π12+π)\sin \left( {\dfrac{{17\pi }}{{12}}} \right) = \sin \left( {\dfrac{{5\pi }}{{12}} + \pi } \right)
Using the trigonometric table and the unit circle, also sine is negative in third quadrant
sin(17π12)=sin(5π12)\sin \left( {\dfrac{{17\pi }}{{12}}} \right) = - \sin \left( {\dfrac{{5\pi }}{{12}}} \right)
Now, using the identity –
2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta
2sin2(5π12)=1cos2(5π12)2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 - \cos 2\left( {\dfrac{{5\pi }}{{12}}} \right)
Simplify the above expression-
2sin2(5π12)=1cos(5π6)2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 - \cos \left( {\dfrac{{5\pi }}{6}} \right) …. (A)
Now, cos(5π6)=cos(ππ6)\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\pi - \dfrac{\pi }{6}} \right)
Cosine is negative in second quadrant –
cos(5π6)=cos(ππ6)=32\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \dfrac{{\sqrt 3 }}{2}
Place the above value in equation (A)
2sin2(5π12)=1+322{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 + \dfrac{{\sqrt 3 }}{2}
Simplify the above expression –
2sin2(5π12)=2+32 sin2(5π12)=2+34   2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{2} \\\ {\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{4} \;
Take square root on both the sides of the equation –
2sin2(5π12)=2+32 sin(5π12)=2+34   2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{2} \\\ \sin \left( {\dfrac{{5\pi }}{{12}}} \right) = \sqrt {\dfrac{{2 + \sqrt 3 }}{4}} \;
Simplify –
sin(5π12)=±2+32\sin \left( {\dfrac{{5\pi }}{{12}}} \right) = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2}
This is the required solution.
So, the correct answer is “±2+32\pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} ”.

Note : Remember the All STC rule, it is also known as ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ( 0  to 900^\circ \;{\text{to 90}}^\circ ) are positive, sine and cosec are positive in the second quadrant ( 90 to 18090^\circ {\text{ to 180}}^\circ ), tan and cot are positive in the third quadrant ( 180  to 270180^\circ \;{\text{to 270}}^\circ ) and sin and cosec are positive in the fourth quadrant ( 270 to 360270^\circ {\text{ to 360}}^\circ ).