Solveeit Logo

Question

Question: What is the value of \(\sin \left( 10 \right)\cos \left( 20 \right)\sin \left( 30 \right)\cos \left(...

What is the value of sin(10)cos(20)sin(30)cos(40)sin(50)cos(60)sin(70)cos(80)\sin \left( 10 \right)\cos \left( 20 \right)\sin \left( 30 \right)\cos \left( 40 \right)\sin \left( 50 \right)\cos \left( 60 \right)\sin \left( 70 \right)\cos \left( 80 \right) ? Not in radians, in degrees.

Explanation

Solution

Two angles are complementary if they add up to make 90{{90}^{\circ }} . for complementary angles, the trigonometric ratios are related to each other as
If, A+B=90\angle A+\angle B={{90}^{\circ }}
sinA=cosB cosA=sinB \begin{aligned} & \sin A=\cos B \\\ & \cos A=\sin B \\\ \end{aligned}
Certain identities and expansions will help us in this question
cos(x+y)=cosxcosysinxsiny cos(xy)=cosxcosy+sinxsiny sin(x+y)=sinxcosy+cosxsiny sin(xy)=sinxcosycosxsiny (a+b)2=a2+b2+2ab \begin{aligned} & \cos \left( x+y \right)=\cos x\cos y-\sin x\sin y \\\ & \cos \left( x-y \right)=\cos x\cos y+\sin x\sin y \\\ & \sin \left( x+y \right)=\sin x\cos y+\cos x\sin y \\\ & \sin \left( x-y \right)=\sin x\cos y-\cos x\sin y \\\ & {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\\ \end{aligned}
Certain trigonometric values to be remembered:
sin60=cos30=32 cos60=sin30=12 sin45=cos45=12 \begin{aligned} & \sin {{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ & \cos {{60}^{\circ }}=\sin {{30}^{\circ }}=\dfrac{1}{2} \\\ & \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\\ \end{aligned}

Complete step by step answer:
Here, we can see that we have pairs of complementary angles multiplied together,
Arranging them in pairs, we get
(sin(10)cos(80))(cos(20)sin(70))(sin(30)cos(60))(cos(40)sin(50))\left( \sin \left( 10 \right)\cos \left( 80 \right) \right)\left( \cos \left( 20 \right)\sin \left( 70 \right) \right)\left( \sin \left( 30 \right)\cos \left( 60 \right) \right)\left( \cos \left( 40 \right)\sin \left( 50 \right) \right)
Since they are complementary angles, sine of one angle is equal to the cosine of its complement. Hence, using this relation, we get
(sin2(10))(cos2(20))(sin2(30))(cos2(40))\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 20 \right) \right)\left( {{\sin }^{2}}\left( 30 \right) \right)\left( {{\cos }^{2}}\left( 40 \right) \right)
Using sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2},we have
14(sin2(10))(cos2(20))(cos2(40))\dfrac{1}{4}\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 20 \right) \right)\left( {{\cos }^{2}}\left( 40 \right) \right)
Now, we can club cos2(20){{\cos }^{2}}\left( {{20}^{\circ }} \right) and cos2(40){{\cos }^{2}}\left( {{40}^{\circ }} \right) together and use above mentioned expansions to simplify it further
14(sin2(10))(cos(20)cos(40))2\dfrac{1}{4}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 20 \right)\cos \left( 40 \right) \right)}^{2}}
Multiplying and dividing by 2,
=116(sin2(10))(2cos(20)cos(40))2 =116(sin2(10))(cos(40+20)+cos(4020))2 =116(sin2(10))(cos(60)+cos(20))2 \begin{aligned} & =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( 2\cos \left( 20 \right)\cos \left( 40 \right) \right)}^{2}} \\\ & =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 40+20 \right)+\cos \left( 40-20 \right) \right)}^{2}} \\\ & =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 60 \right)+\cos \left( 20 \right) \right)}^{2}} \\\ \end{aligned}
Expanding the above expression using (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab
=116(sin2(10))(cos2(60)+cos2(20)+2cos(60)cos(20))=\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 60 \right)+{{\cos }^{2}}\left( 20 \right)+2\cos \left( 60 \right)\cos \left( 20 \right) \right)
Using the value of cos60=12\cos {{60}^{\circ }}=\dfrac{1}{2} and including sin2(10){{\sin }^{2}}\left( 10 \right) inside the brackets, we get
=116(sin2(10)4+(sin(10)cos(20))2+sin(10)sin(10)cos(20))=\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \sin \left( 10 \right)\cos \left( 20 \right) \right)}^{2}}+\sin \left( 10 \right)\sin \left( 10 \right)\cos \left( 20 \right) \right)
Now, consider sin(10)cos(20)\sin \left( 10 \right)\cos \left( 20 \right)
Multiplying and dividing by 2, we get
2sin(10)cos(20)2\dfrac{2\sin \left( 10 \right)\cos \left( 20 \right)}{2}
Using the above expansions, this expression will be simplified as
=sin(10+20)+sin(1020)2 =sin(30)sin(10)2 \begin{aligned} & =\dfrac{\sin \left( 10+20 \right)+\sin \left( 10-20 \right)}{2} \\\ & =\dfrac{\sin \left( 30 \right)-\sin \left( 10 \right)}{2} \\\ \end{aligned}
Using the value of sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2}, we have
=14sin(10)2=\dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2}
Now using this value in the above formulated expression, we have
=116(sin2(10)4+(sin(10)cos(20))2+sin(10)sin(10)cos(20)) =116(sin2(10)4+(14sin(10)2)2+sin(10)(14sin(10)2)) \begin{aligned} & =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \sin \left( 10 \right)\cos \left( 20 \right) \right)}^{2}}+\sin \left( 10 \right)\sin \left( 10 \right)\cos \left( 20 \right) \right) \\\ & =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right)}^{2}}+\sin \left( 10 \right)\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right) \right) \\\ \end{aligned}
Expanding the expression, we get
=116(sin2(10)4+(116+sin2(10)4sin(10)4)+sin(10)(14sin(10)2)) =116(sin2(10)4+116+sin2(10)4sin(10)4+sin(10)4sin2(10)2) =116×116 =1256 \begin{aligned} & =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+\left( \dfrac{1}{16}+\dfrac{{{\sin }^{2}}\left( 10 \right)}{4}-\dfrac{\sin \left( 10 \right)}{4} \right)+\sin \left( 10 \right)\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right) \right) \\\ & =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+\dfrac{1}{16}+\dfrac{{{\sin }^{2}}\left( 10 \right)}{4}-\dfrac{\sin \left( 10 \right)}{4}+\dfrac{\sin \left( 10 \right)}{4}-\dfrac{{{\sin }^{2}}\left( 10 \right)}{2} \right) \\\ & =\dfrac{1}{16}\times \dfrac{1}{16} \\\ & =\dfrac{1}{256} \\\ \end{aligned}

Hence, the final value of sin(10)cos(20)sin(30)cos(40)sin(50)cos(60)sin(70)cos(80)\sin \left( 10 \right)\cos \left( 20 \right)\sin \left( 30 \right)\cos \left( 40 \right)\sin \left( 50 \right)\cos \left( 60 \right)\sin \left( 70 \right)\cos \left( 80 \right) is 1256\dfrac{1}{256} .

Note: While solving such large expressions, always keep note of the constants that are being multiplied or divided in the expression because any change in them will change the whole answer. Also, apply each trigonometric identity carefully keeping in mind the positive and negative signs.