Solveeit Logo

Question

Question: What is the value of \(\sin \infty\) and \(\cos \infty\) ?...

What is the value of sin\sin \infty and cos\cos \infty ?

Explanation

Solution

We have to find the value of sin\sin \infty and cos\cos \infty. We will solve this question stating the intervals in which the value of sine and cosine function lies . We also give the explanation for the value of the infinity function of cosine and sine function . We can also state the periodicity of the cosine and sine function . We should also have the knowledge of ranges of trigonometric functions .

Complete step-by-step answer :
We know that , the maximum value of a sin\sin function is always 11 for every ( 4n + 1 ) × π2\left( {{\text{ }}4n{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} \times {\text{ }}\dfrac{\pi }{2} , where nn is a whole number
whereas the minimum value of the sin\sin function is always 1 - 1 for every ( 4n 1 ) × π2\left( {{\text{ }}4n{\text{ }} - 1{\text{ }}} \right){\text{ }} \times {\text{ }}\dfrac{\pi }{2} , where nn is a whole number .
So ,
1  sin x  1- 1{\text{ }} \leqslant {\text{ }} \sin{\text{ }}x{\text{ }} \leqslant {\text{ }}1
Hence , the value of sin x\sin{\text{ }}x lies in between the interval [ 1 , 1 ]\left[ {{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right] where xx is between the interval [ π2 , π2]\left[ {{\text{ }}\dfrac{{ - \pi }}{2}{\text{ }},{\text{ }}\dfrac{\pi }{2}} \right]
For any of the value of xx it will lie in between the interval [ 1 , 1 ]\left[ {{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right]. The exact value of sin\sin \infty cannot be calculated but it will only lie in between the interval [  1 , 1 ] .\left[ {{\text{ }} - {\text{ }}1{\text{ }},{\text{ }}1{\text{ }}} \right]{\text{ }}.
Similarly for cos\cos \infty
We know that , the maximum value of a cos\cos function is always 11 for every ( 2n ) × π\left( {{\text{ }}2n{\text{ }}} \right){\text{ }} \times {\text{ }}\pi , where nn is a whole number
whereas the minimum value of the sinsinfunction is always 1 - 1 for every ( 2n + 1 ) × π\left( {{\text{ }}2n{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} \times {\text{ }}\pi , where nn is a whole number .
So ,
1  cos x  1- 1{\text{ }} \leqslant {\text{ }}cos{\text{ }}x{\text{ }} \leqslant {\text{ }}1
Hence , the value of cos xcos{\text{ }}x lies in between the interval [ 1 , 1 ]\left[ {{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right] where xx is between the interval [ 0 , π ]\left[ {{\text{ }}0{\text{ }},{\text{ }}\pi {\text{ }}} \right] .
For any of the value of xx it will lie in between the interval [ 1 , 1 ]\left[ {{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right]. The exact value of cos\cos \infty cannot be calculated but it will only lie in between the interval [  1 , 1 ]\left[ {{\text{ }} - {\text{ }}1{\text{ }},{\text{ }}1{\text{ }}} \right] .
Hence , the value of sin\sin \infty and cos\cos \infty lies in the interval [ 1 , 1 ]\left[ {{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right].

Note : The periodic value of cos\cos and sin\sin function is 2π2\pi I.e. the value of cos\cos and sin\sin function repeats after an interval of 2π2\pi .
The expansions of the trigonometric terms :
cosx=1(x22!)+(x44!)(x66!)+.......................\cos x = 1 - (\dfrac{{{x^2}}}{{2!}}) + (\dfrac{{{x^4}}}{{4!}}) - (\dfrac{{{x^6}}}{{6!}}) + .......................
sinx=x(x33!)+(x55!)(x77!)+.................\sin x = x - (\dfrac{{{x^3}}}{{3!}}) + (\dfrac{{{x^5}}}{{5!}}) - (\dfrac{{{x^7}}}{{7!}}) + .................