Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

What is the value of sin1950cos1950\sin \, 1950^{\circ} - \cos \, 1950^{\circ}?

A

0

B

(3+1)/2(\sqrt{3} + 1) / 2

C

(13)/2( 1 - \sqrt{3} ) / 2

D

(31)/2(\sqrt{3} - 1) / 2

Answer

(3+1)/2(\sqrt{3} + 1) / 2

Explanation

Solution

The given expression sin1950cos1950\sin \, 1950^{\circ} - \cos \, 1950^{\circ} can also be written as =sin(10×180+150)cos(10×180+150)= \sin (10 \times 180^{\circ} + 150^{\circ} ) - \cos (10 \times 180^{\circ} + 150^{\circ}) =sin150cos150= \sin 150^{\circ}- \cos 150^{\circ} =sin(90+60)cos(90+60)= \sin (90^{\circ} + 60^{\circ}) - \cos (90^{\circ} + 60^{\circ}) =cos60+sin60= \cos 60^{\circ} + \sin 60^{\circ} =12+32=3+12 = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3} + 1}{2}