Solveeit Logo

Question

Question: What is the value of \(\sin {105^0} + \cos {105^0}\)? \( {\text{A}}{\text{. }}\sin {50^0} \\\ ...

What is the value of sin1050+cos1050\sin {105^0} + \cos {105^0}?
A. sin500 B. cos500 C. 12 D. 0  {\text{A}}{\text{. }}\sin {50^0} \\\ {\text{B}}{\text{. cos}}{50^0} \\\ {\text{C}}{\text{. }}\dfrac{1}{{\sqrt 2 }} \\\ {\text{D}}{\text{. 0}} \\\

Explanation

Solution

Hint- Here, we will be splitting the angle 1050{105^0} into the sum of 600{60^0} and 450{45^0} because from the trigonometric table we know the values of the trigonometric functions corresponding to 600{60^0} and 450{45^0}.

“Complete step-by-step answer:”
As we know that sin(A+B)=(sinA)(cosB)+(cosA)(sinB)\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)

sin1050=sin(600+450) sin1050=(sin600)(cos450)+(cos600)(sin450) (1)  \sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\\ \Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\\

According to trigonometric table, sin600=32\sin {60^0} = \dfrac{{\sqrt 3 }}{2}, cos600=12\cos {60^0} = \dfrac{1}{2} and sin450=cos450=12sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}

sin1050=(32)(12)+(12)(12)=322+122 sin1050=3+122 (2)  \Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\\ \Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\\

Also we know that cos(A+B)=(cosA)(cosB)(sinA)(sinB)\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)
cos1050=cos(600+450) cos1050=(cos600)(cos450)(sin600)(sin450) (3)  \cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\\ \Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\\
According to trigonometric table, sin600=32\sin {60^0} = \dfrac{{\sqrt 3 }}{2}, cos600=12\cos {60^0} = \dfrac{1}{2} and sin450=cos450=12sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}
Putting the above values in equation (3), we get
cos1050=(12)(12)(32)(12)=122322 cos1050=1322 (4)  \Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\\ \Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\\
The value of expression sin1050+cos1050\sin {105^0} + \cos {105^0} can be obtained by using equations (2) and (4), we get
sin1050+cos1050=3+122+1322=3+1+1322=222=12\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}
Hence, option C is correct.

Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to 1050{105^0} directly so in order to obtain that we split this angle and then use the formulas sin(A+B)=(sinA)(cosB)+(cosA)(sinB)\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right) and cos(A+B)=(cosA)(cosB)(sinA)(sinB)\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right) to obtain the values of sin1050\sin {105^0} and cos1050\cos {105^0}.