Question
Question: What is the value of \(\sin {105^0} + \cos {105^0}\)? \( {\text{A}}{\text{. }}\sin {50^0} \\\ ...
What is the value of sin1050+cos1050?
A. sin500 B. cos500 C. 21 D. 0
Solution
Hint- Here, we will be splitting the angle 1050 into the sum of 600 and 450 because from the trigonometric table we know the values of the trigonometric functions corresponding to 600 and 450.
“Complete step-by-step answer:”
As we know that sin(A+B)=(sinA)(cosB)+(cosA)(sinB)
According to trigonometric table, sin600=23, cos600=21 and sin450=cos450=21
⇒sin1050=(23)(21)+(21)(21)=223+221 ⇒sin1050=223+1 →(2)Also we know that cos(A+B)=(cosA)(cosB)−(sinA)(sinB)
cos1050=cos(600+450) ⇒cos1050=(cos600)(cos450)−(sin600)(sin450) →(3)
According to trigonometric table, sin600=23, cos600=21 and sin450=cos450=21
Putting the above values in equation (3), we get
⇒cos1050=(21)(21)−(23)(21)=221−223 ⇒cos1050=221−3 →(4)
The value of expression sin1050+cos1050 can be obtained by using equations (2) and (4), we get
sin1050+cos1050=223+1+221−3=223+1+1−3=222=21
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to 1050 directly so in order to obtain that we split this angle and then use the formulas sin(A+B)=(sinA)(cosB)+(cosA)(sinB) and cos(A+B)=(cosA)(cosB)−(sinA)(sinB) to obtain the values of sin1050 and cos1050.