Solveeit Logo

Question

Question: What is the value of \({\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)\)?...

What is the value of sin1(sin2π3){\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)?

Explanation

Solution

Hint:In this question first we have to let the given function equal to yy. Then using inverse trigonometric functions we have to find that its possible value will lie in the principal value that function or not. If not then check for another possible value.

Complete step-by-step answer:
Let y=sin1(sin2π3)y = {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)
Now, on taking on both sides. we get
siny=sinsin1sin(2π3) siny=sin(2π3) eq.1  \Rightarrow \sin y = \sin \\{ {\sin ^{ - 1}}\sin \left( {\dfrac{{2\pi }}{3}} \right)\\} \\\ \Rightarrow \sin y = \sin \left( {\dfrac{{2\pi }}{3}} \right){\text{ eq}}{\text{.1}} \\\
But range of principal value of sin1 is [π2,π2]{\sin ^{ - 1}}{\text{ is }}\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right].Therefore, y=2π3y = \dfrac{{2\pi }}{3}is not possible.
We know that sinx\sin xis positive in the first and second quadrant and negative in the third and fourth quadrant.
sin(πθ)=sinθ\Rightarrow \sin (\pi - \theta ) = \sin \theta eq.2
Now, again consider the eq.1
siny=sin(2π3)  siny=sin(π2π3)  from eq.2 siny=sin(π3)  y = π3  \Rightarrow \sin y = \sin \left( {\dfrac{{2\pi }}{3}} \right){\text{ }} \\\ \Rightarrow \sin y = \sin \left( {\pi - \dfrac{{2\pi }}{3}} \right){\text{ \\{ from eq}}{\text{.2\\} }} \\\ \Rightarrow \sin y = \sin \left( {\dfrac{\pi }{3}} \right){\text{ }} \\\ \Rightarrow {\text{y = }}\dfrac{\pi }{3} \\\
Which is in range of principal value of sin1 i.e. [π2,π2]{\sin ^{ - 1}}{\text{ i}}{\text{.e}}{\text{. }}\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right].
Hence,
sin1(sin2π3){\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)=π3\dfrac{\pi }{3}

Note:Whenever you get this type of question the key concept to solve this is to learn the principal values of inverse trigonometric functions. And properties of trigonometric functions like in this question we need the property of sinx\sin xthat it is positive in the first and second quadrant and negative in rest.