Solveeit Logo

Question

Question: What is the value of \[{\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right)\]?...

What is the value of sec2(tan1(511)){\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right)?
A. 12196\dfrac{{121}}{{96}}
B. 217921\dfrac{{217}}{{921}}
C. 146121\dfrac{{146}}{{121}}
D. 267121\dfrac{{267}}{{121}}

Explanation

Solution

In this question, we have to find the value of sec2(tan1(511)){\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right). For this first we will simplify it by assuming A=tan1(511)A = {\tan ^{ - 1}}\left( {\dfrac{5}{{11}}} \right). Then using tantan1x=x\tan {\tan ^{ - 1}}x = x we will further simplify it. Then we will use the identity sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x to rewrite the given expression and then we will substitute the obtained value of tantan1(511)\tan {\tan ^{ - 1}}\left( {\dfrac{5}{{11}}} \right) and we will simplify it to find the result.

Complete step by step answer:
Here, we have to find the value of sec2(tan1(511)){\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right). To solve this, we will assume A=tan1(511)(1)A = {\tan ^{ - 1}}\left( {\dfrac{5}{{11}}} \right) - - - (1). Taking tan\tan both the sides of (1)(1), we get
tanA=tantan1(511)\Rightarrow \tan A = \tan {\tan ^{ - 1}}\left( {\dfrac{5}{{11}}} \right)
As we know that tantan1x=x\tan {\tan ^{ - 1}}x = x. Using this, we get
tanA=511\Rightarrow \tan A = \dfrac{5}{{11}}
tantan1(511)=511(2)\Rightarrow \tan {\tan ^{ - 1}}\left( {\dfrac{5}{{11}}} \right) = \dfrac{5}{{11}} - - - (2)
Using the identity sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x, we can write
sec2(tan1(511))=1+tan2(tan1(511))\Rightarrow {\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right) = 1 + {\tan ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right)

On rewriting, we get
sec2(tan1(511))=1+(tan(tan1(511)))2\Rightarrow {\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right) = 1 + {\left( {\tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right)} \right)^2}
Using (2)\left( 2 \right), we get
sec2(tan1(511))=1+(511)2\Rightarrow {\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right) = 1 + {\left( {\dfrac{5}{{11}}} \right)^2}
sec2(tan1(511))=1+25121\Rightarrow {\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right) = 1 + \dfrac{{25}}{{121}}
On simplifying, we get
sec2(tan1(511))=146121\therefore {\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right) = \dfrac{{146}}{{121}}
Therefore, the value of sec2(tan1(511)){\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\dfrac{5}{{11}}} \right)} \right) is 146121\dfrac{{146}}{{121}}.

Hence, option C is correct.

Note: Here, we have used the trigonometric identity sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x. Trigonometric identities are equalities that involve trigonometric functions. An identity is an equation which is always true, no matter what values are substituted whereas an equation may not be true for some values that are substituted. There are many other identities that we can use according to the question to simplify the expression.