Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

What is the value of n so that the angle between the lines having direction ratios (1,1,1)(1, 1, 1) and (1,1,n)(1, -1, n) is 6060^{\circ} ?

A

3\sqrt{3}

B

6\sqrt{6}

C

3

D

None of these

Answer

6\sqrt{6}

Explanation

Solution

If (l1,m1,n1)\left(l_{1}, m_{1}, n_{1}\right) and (l2,m2,n2)\left(l_{2}, m_{2}, n_{2}\right) are the direction ratios then
angle between the lines is cosθ=l1l2+m1m2+n1n2l12+m12+n12l22+m22+n22\cos \theta=\frac{l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}} \sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}
Here l1=1,m1=1,n1=1l_{1}=1, m_{1}=1, n_{1}=1
and l2=1,m2=1,n2=nl_{2}=1, m_{2}=-1, n_{2}=n and q=60q=60^{\circ}
cos60=1×1+1×(1)+1×n12+12+12×12+12+n2\therefore \cos 60^{\circ}=\frac{1 \times 1+1 \times(-1)+1 \times n}{\sqrt{1^{2}+1^{2}+1^{2}} \times \sqrt{1^{2}+1^{2}+n^{2}}}
12=n32+n2\Rightarrow \frac{1}{2}=\frac{n}{\sqrt{3} \sqrt{2+n^{2}}}
3(2+n2)=4n2\Rightarrow 3\left(2+n^{2}\right)=4 n^{2}
n2=6\Rightarrow n^{2}=6
n=±6\Rightarrow n=\pm \sqrt{6}