Solveeit Logo

Question

Physics Question on Vector basics

What is the value of linear velocity, if angular velocity is 3i^4j^+k^3 \hat{ i }-4 \hat{ j }+\hat{ k } and distance from the centre is 5i^6j^+6k^5 \hat{ i }-6 \hat{ j }+6 \hat{ k } ?

A

6i^+6j^3k^6\hat{i} + 6\hat{j} - 3\hat{k}

B

18i^13j^+2k^-18\hat{i} - 13\hat{j} +2 \hat{k}

C

4i^13j^6k^4\hat{i} - 13\hat{j} -6 \hat{k}

D

6i^2j^+8k^6\hat{i} - 2\hat{j} +8 \hat{k}

Answer

18i^13j^+2k^-18\hat{i} - 13\hat{j} +2 \hat{k}

Explanation

Solution

The linear velocity of a particle is given by
v=ωrv=\omega \,r As shown in figure,
the direction of velocity v\vec{v} is tangential to the circular path.
Both the magnitude and direction of v\vec{v} can be accounted for by using the cross product of cdcd and r\vec{r} .
Hence, v=ω×r\vec{v}=\vec{\omega }\times \vec{r}
Given, ω=3i^4j^+k^\vec{\omega }=3\hat{i}-4\hat{j}+\hat{k}
and r=5i^6j^+6k^\vec{r}=5\hat{i}-6\hat{j}+6\hat{k}
\therefore v=i^j^k^ 341 566 \vec{v}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 3 & -4 & 1 \\\ 5 & -6 & 6 \\\ \end{matrix} \right|
=i^(24+6)j^(185)+k^(18+20)=\hat{i}(-24+6)-\hat{j}(18-5)+\hat{k}(-18+20)
=18i^13j^+2k^=-18\hat{i}-13\hat{j}+2\hat{k}
Note: Greater the distance of the particle from the centre, greater will be its linear velocity.