Solveeit Logo

Question

Question: What is the value of \[\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta ...

What is the value of 0π4sec7θsin3θdθ\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta }
A. 112\dfrac{1}{{12}}
B. 312\dfrac{3}{{12}}
C. 512\dfrac{5}{{12}}
D. None of these

Explanation

Solution

We write the value of secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} and separate the terms in the numerator so we can apply the trigonometric identity sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta . Substituting the value of cosθ\cos \theta as a variable we change the integration in the form of the substituted variable. We solve the integration and put back the value of the variable as cosθ\cos \theta and then apply the limits.

  • xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}

Complete step-by-step answer:
We have the integration 0π4sec7θsin3θdθ\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } .
Substitute the value of secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
0π4sec7θsin3θdθ=0π4sin3θcos7θdθ\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{{\sin }^3}\theta }}{{{{\cos }^7}\theta }}d\theta }
Now we write the numerator as sin3θ=sin2θ.sinθ{\sin ^3}\theta = {\sin ^2}\theta .\sin \theta
0π4sec7θsin3θdθ=0π4sin2θ.sinθcos7θdθ\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{{\sin }^2}\theta .\sin \theta }}{{{{\cos }^7}\theta }}d\theta }
Use the formula sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta in the numerator, so we convert the whole term in the form of cosθ\cos \theta .
0π4sec7θsin3θdθ=0π4(1cos2θ).sinθcos7θdθ\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{(1 - {{\cos }^2}\theta ).\sin \theta }}{{{{\cos }^7}\theta }}d\theta }
Let us assume u=cosθu = \cos \theta
Differentiating both sides of the equation
du=sinθdθdu = - \sin \theta d\theta { ddθ(cosθ)=sinθ\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta }
Substitute the values in the integration without changing the limits.
0π4sec7θsin3θdθ=0π4(1u2)u7du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} { - \dfrac{{(1 - {u^2})}}{{{u^7}}}du}
0π4sec7θsin3θdθ=0π4u21u7du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{u^2} - 1}}{{{u^7}}}du}
Solving RHS by multiplying numerator and denominator by u7{u^{ - 7}}.
0π4sec7θsin3θdθ=0π4u21u7×u7u7du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{u^2} - 1}}{{{u^7}}} \times \dfrac{{{u^{ - 7}}}}{{{u^7}}}du}
0π4sec7θsin3θdθ=0π4u2.u7u7u7.u7du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{u^2}.{u^{ - 7}} - {u^{ - 7}}}}{{{u^7}.{u^{ - 7}}}}du}
Now we know that when the base is same powers get added
0π4sec7θsin3θdθ=0π4u27u7u77du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{u^{2 - 7}} - {u^{ - 7}}}}{{{u^{7 - 7}}}}du}
Solving the values in power and using the fact that any number with power 0 is equal to one.
0π4sec7θsin3θdθ=0π4u5u71du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{u^{ - 5}} - {u^{ - 7}}}}{1}du}
0π4sec7θsin3θdθ=0π4u5u7du\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \int\limits_0^{\dfrac{\pi }{4}} {{u^{ - 5}} - {u^{ - 7}}du}
Now using method of integration xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} we solve RHS.
0π4u5u7du=[(u5+15+1)(u7+17+1)]0π4\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{u^{ - 5}} - {u^{ - 7}}du} = \left[ {\left( {\dfrac{{{u^{ - 5 + 1}}}}{{ - 5 + 1}}} \right) - \left( {\dfrac{{{u^{ - 7 + 1}}}}{{ - 7 + 1}}} \right)} \right]_0^{\dfrac{\pi }{4}}
0π4u5u7du=[(u44)(u66)]0π4\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{u^{ - 5}} - {u^{ - 7}}du} = \left[ {\left( {\dfrac{{{u^{ - 4}}}}{{ - 4}}} \right) - \left( {\dfrac{{{u^{ - 6}}}}{{ - 6}}} \right)} \right]_0^{\dfrac{\pi }{4}}
0π4u5u7du=[16u614u4]0π4\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{u^{ - 5}} - {u^{ - 7}}du} = \left[ {\dfrac{1}{{6{u^6}}} - \dfrac{1}{{4{u^4}}}} \right]_0^{\dfrac{\pi }{4}}
Substitute the value of u=cosθu = \cos \theta
0π4sec7θsin3θdθ=[16(cosθ)614(cosθ)4]0π4\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\dfrac{1}{{6{{(\cos \theta )}^6}}} - \dfrac{1}{{4{{(\cos \theta )}^4}}}} \right]_0^{\dfrac{\pi }{4}}
Now applying the limits
0π4sec7θsin3θdθ=[(16(cosπ4)614(cosπ4)4)(16(cos0)614(cos0)4)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{1}{{6{{(\cos \dfrac{\pi }{4})}^6}}} - \dfrac{1}{{4{{(\cos \dfrac{\pi }{4})}^4}}}} \right) - \left( {\dfrac{1}{{6{{(\cos 0)}^6}}} - \dfrac{1}{{4{{(\cos 0)}^4}}}} \right)} \right]
We know cos0=1,cosπ4=12\cos 0 = 1,\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}
0π4sec7θsin3θdθ=[(16(12)614(12)4)(16(1)614(1)4)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{1}{{6{{(\dfrac{1}{{\sqrt 2 }})}^6}}} - \dfrac{1}{{4{{(\dfrac{1}{{\sqrt 2 }})}^4}}}} \right) - \left( {\dfrac{1}{{6{{(1)}^6}}} - \dfrac{1}{{4{{(1)}^4}}}} \right)} \right]
0π4sec7θsin3θdθ=[(16(18)14(14))(16(1)14(1))]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{1}{{6(\dfrac{1}{8})}} - \dfrac{1}{{4(\dfrac{1}{4})}}} \right) - \left( {\dfrac{1}{{6(1)}} - \dfrac{1}{{4(1)}}} \right)} \right]
Solve the denominators.
0π4sec7θsin3θdθ=[(861)(1614)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{8}{6} - 1} \right) - \left( {\dfrac{1}{6} - \dfrac{1}{4}} \right)} \right]
0π4sec7θsin3θdθ=[(431)(1614)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{4}{3} - 1} \right) - \left( {\dfrac{1}{6} - \dfrac{1}{4}} \right)} \right]
Take LCM on RHS
0π4sec7θsin3θdθ=[(433)(4624)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{{4 - 3}}{3}} \right) - \left( {\dfrac{{4 - 6}}{{24}}} \right)} \right]
0π4sec7θsin3θdθ=[(13)(224)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{1}{3}} \right) - \left( {\dfrac{{ - 2}}{{24}}} \right)} \right]
0π4sec7θsin3θdθ=[(13)+(112)]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\left( {\dfrac{1}{3}} \right) + \left( {\dfrac{1}{{12}}} \right)} \right]
Take LCM again on RHS
0π4sec7θsin3θdθ=[4+112]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \left[ {\dfrac{{4 + 1}}{{12}}} \right]
0π4sec7θsin3θdθ=512\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta } = \dfrac{5}{{12}}

So, option C is correct.

Note: Students make the mistake of not changing the sign when shifting values from one side to another. Also, the negative sign when we find the value of du should be multiplied when substituting the values of u and du. Always solve the calculations in the end step by step to avoid wrong answers.