Question
Question: What is the value of \[\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^7}\theta {{\sin }^3}\theta d\theta ...
What is the value of 0∫4πsec7θsin3θdθ
A. 121
B. 123
C. 125
D. None of these
Solution
We write the value of secθ=cosθ1 and separate the terms in the numerator so we can apply the trigonometric identity sin2θ=1−cos2θ. Substituting the value of cosθ as a variable we change the integration in the form of the substituted variable. We solve the integration and put back the value of the variable as cosθ and then apply the limits.
- ∫xndx=n+1xn+1
Complete step-by-step answer:
We have the integration 0∫4πsec7θsin3θdθ.
Substitute the value of secθ=cosθ1
⇒0∫4πsec7θsin3θdθ=0∫4πcos7θsin3θdθ
Now we write the numerator as sin3θ=sin2θ.sinθ
⇒0∫4πsec7θsin3θdθ=0∫4πcos7θsin2θ.sinθdθ
Use the formula sin2θ=1−cos2θ in the numerator, so we convert the whole term in the form of cosθ.
⇒0∫4πsec7θsin3θdθ=0∫4πcos7θ(1−cos2θ).sinθdθ
Let us assume u=cosθ
Differentiating both sides of the equation
du=−sinθdθ { dθd(cosθ)=−sinθ}
Substitute the values in the integration without changing the limits.
⇒0∫4πsec7θsin3θdθ=0∫4π−u7(1−u2)du
⇒0∫4πsec7θsin3θdθ=0∫4πu7u2−1du
Solving RHS by multiplying numerator and denominator by u−7.
⇒0∫4πsec7θsin3θdθ=0∫4πu7u2−1×u7u−7du
⇒0∫4πsec7θsin3θdθ=0∫4πu7.u−7u2.u−7−u−7du
Now we know that when the base is same powers get added
⇒0∫4πsec7θsin3θdθ=0∫4πu7−7u2−7−u−7du
Solving the values in power and using the fact that any number with power 0 is equal to one.
⇒0∫4πsec7θsin3θdθ=0∫4π1u−5−u−7du
⇒0∫4πsec7θsin3θdθ=0∫4πu−5−u−7du
Now using method of integration ∫xndx=n+1xn+1we solve RHS.
⇒0∫4πu−5−u−7du=[(−5+1u−5+1)−(−7+1u−7+1)]04π
⇒0∫4πu−5−u−7du=[(−4u−4)−(−6u−6)]04π
⇒0∫4πu−5−u−7du=[6u61−4u41]04π
Substitute the value of u=cosθ
⇒0∫4πsec7θsin3θdθ=[6(cosθ)61−4(cosθ)41]04π
Now applying the limits
⇒0∫4πsec7θsin3θdθ=6(cos4π)61−4(cos4π)41−(6(cos0)61−4(cos0)41)
We know cos0=1,cos4π=21
⇒0∫4πsec7θsin3θdθ=6(21)61−4(21)41−(6(1)61−4(1)41)
⇒0∫4πsec7θsin3θdθ=6(81)1−4(41)1−(6(1)1−4(1)1)
Solve the denominators.
⇒0∫4πsec7θsin3θdθ=[(68−1)−(61−41)]
⇒0∫4πsec7θsin3θdθ=[(34−1)−(61−41)]
Take LCM on RHS
⇒0∫4πsec7θsin3θdθ=[(34−3)−(244−6)]
⇒0∫4πsec7θsin3θdθ=[(31)−(24−2)]
⇒0∫4πsec7θsin3θdθ=[(31)+(121)]
Take LCM again on RHS
⇒0∫4πsec7θsin3θdθ=[124+1]
⇒0∫4πsec7θsin3θdθ=125
So, option C is correct.
Note: Students make the mistake of not changing the sign when shifting values from one side to another. Also, the negative sign when we find the value of du should be multiplied when substituting the values of u and du. Always solve the calculations in the end step by step to avoid wrong answers.