Solveeit Logo

Question

Question: What is the value of expression \(\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 +...

What is the value of expression (2tan4+3cot4)(2cot4+3tan4)24cot28+25\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 + 25}} is,
A. 1
B. 2
C. 3
D. 4

Explanation

Solution

Start by converting all the trigonometric quantities in terms of sin and cos ,Take L.C.M. and simplify . Use the trigonometric identities and formulas for ease of calculation and simplification .Re -arrange the terms , so that it becomes easy to recognize and solve.

Complete step-by-step answer:
In this question, it is given to us that we have to find the value of the expression, (2tan4+3cot4)(2cot4+3tan4)24cot28+25\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 + 25}}
Expressing the above in terms of sin, cos ,we get
(2sin4cos4+3cos4sin4)(2cos4sin4+3sin4cos4)24(cos8sin8)2+25\dfrac{{(2\dfrac{{\sin 4}}{{\cos 4}} + 3\dfrac{{\cos 4}}{{\sin 4}})(2\dfrac{{\cos 4}}{{\sin 4}} + 3\dfrac{{\sin 4}}{{\cos 4}})}}{{24{{\left( {\dfrac{{\cos 8}}{{\sin 8}}} \right)}^2} + 25}}
Taking L.C.M and simplifying , we get
(2sin24+3cos24cos4sin4)(2cos24+3sin24sin4cos4)24cos28+25sin28sin28\dfrac{{(\dfrac{{2{{\sin }^2}4 + 3{{\cos }^2}4}}{{\cos 4\sin 4}})(\dfrac{{2{{\cos }^2}4 + 3{{\sin }^2}4}}{{\sin 4\cos 4}})}}{{\dfrac{{24{{\cos }^2}8 + 25{{\sin }^2}8}}{{{{\sin }^2}8}}}}
Now , we can break few of the terms in order to simplify more, we get
(2sin24+2cos24+cos24cos4sin4)(2cos24+2sin24+sin24sin4cos4)24cos28+24sin28+sin28sin28\dfrac{{\left( {\dfrac{{2{{\sin }^2}4 + 2{{\cos }^2}4 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2{{\cos }^2}4 + 2{{\sin }^2}4 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24{{\cos }^2}8 + 24{{\sin }^2}8 + {{\sin }^2}8}}{{{{\sin }^2}8}}}}
We know, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
(2+cos24cos4sin4)(2+sin24sin4cos4)24+sin28sin28\dfrac{{\left( {\dfrac{{2 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24 + {{\sin }^2}8}}{{{{\sin }^2}8}}}}
Now , further breaking sin 8 as sin 2(4) , we get
(2+cos24cos4sin4)(2+sin24sin4cos4)24+sin22(4)sin22(4)\dfrac{{\left( {\dfrac{{2 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24 + {{\sin }^2}2(4)}}{{{{\sin }^2}2(4)}}}}
Re- arranging the numerator and denominators , we get
(2+cos24)(2+sin24)(sin22(4))(24+sin22(4))(cos24sin24)\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right)\left( {{{\sin }^2}2(4)} \right)}}{{\left( {24 + {{\sin }^2}2(4)} \right)\left( {{{\cos }^2}4{{\sin }^2}4} \right)}}
Now , we will use the formula sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
(2+cos24)(2+sin24)(2sin4cos4)2(24+4sin24cos24)(cos24sin24)\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right){{\left( {2\sin 4\cos 4} \right)}^2}}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)\left( {{{\cos }^2}4{{\sin }^2}4} \right)}}
By simplification, we will get:
(2+cos24)(2+sin24)4(24+4sin24cos24)\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right)4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}}
By multiplying, we will get
16+8sin24+8cos24+4sin24cos24(24+4sin24cos24) 16+8(sin24+cos24)+4sin24cos24(24+4sin24cos24)   \dfrac{{16 + 8{{\sin }^2}4 + 8{{\cos }^2}4 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\\ \Rightarrow \dfrac{{16 + 8({{\sin }^2}4 + {{\cos }^2}4) + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\\ \\\
Using the identity, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
16+8+4sin24cos24(24+4sin24cos24) 24+4sin24cos24(24+4sin24cos24) =1   \Rightarrow \dfrac{{16 + 8 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\\ \Rightarrow \dfrac{{24 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\\ = 1 \\\ \\\

So, the correct answer is “Option A”.

Note: In this particular question, the most used formula is sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta . It should be noted that in such a type of question we have to use trigonometric identities like sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 . By using these basics one can easily solve these types of questions.