Question
Question: What is the value of expression \(\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 +...
What is the value of expression 24cot28+25(2tan4+3cot4)(2cot4+3tan4) is,
A. 1
B. 2
C. 3
D. 4
Solution
Start by converting all the trigonometric quantities in terms of sin and cos ,Take L.C.M. and simplify . Use the trigonometric identities and formulas for ease of calculation and simplification .Re -arrange the terms , so that it becomes easy to recognize and solve.
Complete step-by-step answer:
In this question, it is given to us that we have to find the value of the expression, 24cot28+25(2tan4+3cot4)(2cot4+3tan4)
Expressing the above in terms of sin, cos ,we get
24(sin8cos8)2+25(2cos4sin4+3sin4cos4)(2sin4cos4+3cos4sin4)
Taking L.C.M and simplifying , we get
sin2824cos28+25sin28(cos4sin42sin24+3cos24)(sin4cos42cos24+3sin24)
Now , we can break few of the terms in order to simplify more, we get
sin2824cos28+24sin28+sin28(cos4sin42sin24+2cos24+cos24)(sin4cos42cos24+2sin24+sin24)
We know, sin2θ+cos2θ=1
sin2824+sin28(cos4sin42+cos24)(sin4cos42+sin24)
Now , further breaking sin 8 as sin 2(4) , we get
sin22(4)24+sin22(4)(cos4sin42+cos24)(sin4cos42+sin24)
Re- arranging the numerator and denominators , we get
(24+sin22(4))(cos24sin24)(2+cos24)(2+sin24)(sin22(4))
Now , we will use the formula sin2θ=2sinθcosθ
(24+4sin24cos24)(cos24sin24)(2+cos24)(2+sin24)(2sin4cos4)2
By simplification, we will get:
(24+4sin24cos24)(2+cos24)(2+sin24)4
By multiplying, we will get
(24+4sin24cos24)16+8sin24+8cos24+4sin24cos24 ⇒(24+4sin24cos24)16+8(sin24+cos24)+4sin24cos24
Using the identity, sin2θ+cos2θ=1
⇒(24+4sin24cos24)16+8+4sin24cos24 ⇒(24+4sin24cos24)24+4sin24cos24 =1
So, the correct answer is “Option A”.
Note: In this particular question, the most used formula is sin2θ=2sinθcosθ. It should be noted that in such a type of question we have to use trigonometric identities like sin2θ+cos2θ=1 . By using these basics one can easily solve these types of questions.